• Title/Summary/Keyword: lime composition

Search Result 107, Processing Time 0.024 seconds

Compositional and Microstructural Study of Punchong from Hakbongni, Kongju (공주 학봉리 분청에 대한 성분과 미세구조의 분석)

  • Lee, Young Eun;Koh, Kyongshin
    • Journal of Conservation Science
    • /
    • v.6 no.1 s.7
    • /
    • pp.3-14
    • /
    • 1997
  • Twelve Punchong sherds collected in Hakbongni, Kongju where the well known iron-painted on white slip were manufactured from late 15C to early 16C were analyzed for their composition and microstructure. The composition of the body was analyzed by X-ray fluorescence and that of glaze by electron probe micro-analyzer. Microstructure was observed by optical microscope, polarizing microscope, EPMA, and X-ray diffractometer. The results of composition of body and glaze of Hakbongni were compared with those of Punchong from Yongsuri, Boryong which was close to Hakbongni. The composition of body and glaze of these two areas were compared by principal component analysis using SPSS program. Hakbongni bodies have higher silica and flux materials but lower alumina and their glaze have higher silica, soda, iron oxide but lower alumina, calcia. Hakbongni punchong itself is divided into two groups. Their glaze is lime type. There are many remnant minerals, such as quartz, large feldspar mass with partially melted surrounding area, albite, biotite, and iron-oxide. From such a microstructure we can assume that preparation of raw material was rather crude and firing temperature quite low. Iron-painted material is identified as Mg/Fe/Al spinel by composition analysis and XRD pattern.

  • PDF

Comparison of volatile flavor compounds of yuzu, kumquat, lemon and lime (유자, 금귤, 레몬 및 라임의 휘발성 향기성분의 비교)

  • Hong, Young Shin;Lee, Ym Shik;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.394-405
    • /
    • 2017
  • This study was conducted to confirm the usefulness of essential oil components in yuzu and kumquat cultivated in Korea for comparison with those in lemon and lime. The volatile flavor compounds in citrus fruits (yuzu, kumquat, lemon and lime) were extracted for 3 h with 100 mL redistilled n-pentane/diethylether (1:1, v/v) mixture, using a simultaneous steam distillation and extraction apparatus (SDE). The volatile flavor compositions of the samples were analyzed by gas chromatography-mass spectrometry (GC-MS). The aroma compounds analyzed were 104 (3,713.02 mg/kg) in yuzu, 87 (621.71 mg/kg) in kumquat 103 (3,024.69 mg/kg) in lemon and 106 (2,209.16 mg/kg) in lime. Limonene was a major volatile flavor compound in four citrus fruits. The peak area of limonene was 35.03% in yuzu, 63.82% in kumquat, 40.35% in lemon, and 25.06% in lime. In addition to limonene, the major volatile flavor compounds were ${\gamma}$-terpinene, linalool, ${\beta}$-myrcene, (E)-${\beta}$-farnesene, ${\alpha}$-pinene and ${\beta}$-pinene in yuzu, and ${\beta}$-myrcene, ${\alpha}$-pinene, (Z)-limonene oxide, (E)-limonene oxide, geranyl acetate and limonen-10-yl acetate in kumquat. Furthermore, ${\gamma}$-terpinene, ${\beta}$-pinene, ${\beta}$-myrcene, geranyl acetate, neryl acetate and (Z)-${\beta}$-bisabolene in lemon and ${\gamma}$-terpinene, ${\beta}$-pinene, (Z)-${\beta}$-bisabolene, neral, geranial and neryl acetate in lime were also detected. As a result, it was confirmed that the composition of volatile flavor compounds in four citrus fruits was different. Also, yuzu and kumquat are judged to be worthy of use alternatives for lemon and lime widely used in the fragrance industry.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF

Self-Cementitious Hydration of Circulating Fluidized Bed Combustion Fly Ash

  • Lee, Seung-Heun;Kim, Guen-Su
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.128-136
    • /
    • 2017
  • Fly ash from a circulating fluidized bed combustion boiler (CFBC fly ash) is very different in mineralogical composition, chemical composition, and morphology from coal ash from traditional pulverized fuel firing because of many differences in their combustion processes. The main minerals of CFBC fly ash are lime and anhydrous gypsum; however, due to the fuel type, the strength development of CFBC fly ash is affected by minor components of active $SiO_2$ and $Al_2O_3$. The initial hydration product of the circulating fluidized bed combustion fly ash (B CFBC ash) using petro coke as a fuel is Portlandite which becomes gypsum after 7 days. Due to the structural features of the portlandite and gypsum, the self-cementitious strength of B CFBC ash was low. While the hydration products of the circulating fluidized bed combustion fly ash (A CFBC ash) using bituminous coal as a fuel were initially portlandite and ettringite, after 7 days the hydration products were gypsum and C-S-H. Due to the structural features of ettringite and C-S-H, A CFBC ash showed a certain degree of self-cementitious strength.

Raw Materials Composition of Recycled Cement from Waste Concrete Powder (폐콘크리트 미분말을 활용한 재생시멘트의 원료조합)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.61-62
    • /
    • 2012
  • This study is for analyzing possibility of utilizing as cement from waste concrete. The scrapped fine powder which contains a large amount of hydrate of cement can supercede lime stone, and greenhouse gas reductions are expected. However, Fine Aggregate powder efficient separation technology development is essential for that limestone substitution effect and reduce greenhouse gas emissions in order to facilitate through the recycling of the scrapped fine powders.

  • PDF

Oyster Shell waste is alternative sources for Calcium carbonate (CaCO3) instead of Natural limestone

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • In this paper, we investigated the alternative sources of limestone. Oyster shell waste originated from aquaculture that causes a major disposal landfill problem in coastal sectors in southeast Korea. Their inadequate disposal causes a significant environmental problems araised. Bio mineralization leads to the formation of oyster shells and consists $CaCO_3$ as a major phase with a small amount of organic matter. It is a good alternative material source instead of natural lime stone. The utilization of oyster shell waste for industrial applications instead of natural limestone is major advantage for conservation of natural limestone. The present work describes the limestone and oyster shells hydraulic activity and chemical composition and characteristics are most similar for utilization of oyster shell waste instead of natural limestone.

A Quarter Century of Scientific Study on Korean Traditional Ceramics Culture: From Mounds of Waste Shards to Masterpieces of Bisaek Celadon

  • Choo, Carolyn Kyongshin Koh
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The first twenty-five years of scientific study within Korea on Korean traditional ceramics has been characterized as a bridging effort to understand the rich field of artistic ceramic masterpieces on one hand with analytic results gained from mounds of broken shards and kiln wastes on the other. First shard pieces were collected directly from the waste mounds, but most of the analyzed shards were provided by art historians and museum staffs directly involved in systematic excavations. The scientific study is viewed as one of many complimentary ways in learning about the multi-faceted ceramics culture, ultimately connecting human spirits and endeavors from the past to the present to the future. About 1350 pieces of analyzed shards have been so far collected and organized according to the production location and time period. From the experimental results of the analysis, the compositional and microstructural characteristics of bodies and glazes have been deduced for many kiln sites of Goryeo and Joseon dynasties. Except for a few local kilns, porcelain stone was used as body material in both dynasties. The principle of mixing a clay component with a flux material was used in Korean glazes as was in China. The clay component different from body clay was often used early on. In Gangjin a porcelain material appropriate for whiteware body was mixed for celadon glaze, and in Joseon Gwangju kilns glaze stone was chief clay material. The use of wood ash persisted in Korea even in making buncheong glazes, but in Joseon whitewares burnt lime and eventually crushed lime were used as flux material.

Synthesis of the Fe2O3-CoO-Cr2O3-MnO2 pigments by co-precipitation method (공침법에 의한 Fe2O3-CoO-Cr2O3-MnO2계 안료 연구)

  • Choi, Soo-Nyong;Lee, Byung-Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.264-271
    • /
    • 2007
  • The inorganic pigments of $Fe_2O_3-CoO-Cr_2O_3-MnO_2$ were synthesized by the co-precipitation method. $FeCl_3,\;CoCl_2,\;CrCl_3\;and\;MnCl_2$ are used for the starting raw materials, and 2 N-KOH for precipitator. $MnCl_2$ is secured with 10 mole%, and 6 composition ratios are used with three ingredients to synthesize the pigments. The samples were calcined at $1350^{\circ}C/1.5h$. The resulting pigments were characterized by using XRD, FT-IR, SEM, and UV spectrophotometer. 6wt% pigments were applied to lime glaze and lime-barium glaze respectively firing at $1260^{\circ}C$ for oxidation atmosphere and $1240^{\circ}C$ for reduction one. The results of color analysis by using UV spectrophotometer showed black, bluish black and dark grayish green.

Synthesis of Cr-doped Pyrochlore-type Pigments and Coloring in Glazes (Cr-doped Pyrochlore계 안료의 합성 및 유약에서의 발색)

  • Eo, Hye-Jin;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.298-302
    • /
    • 2011
  • This study developed a pigment by doping Cr to Pyrochlore-type stannate crystals and investigated the chromogenic relationship in a glaze. Crystal phases of the pigment according to firing temperatures were analyzed by XRD, and the doping relationship was analyzed by Raman Spectroscopy. Color and reflection rate of the pigment were measured by UV-vis Spectrophotometer. Consequently, stannate characteristic band appeared at 307, 408, 505 and $755cm^{-1}$ until 0.1 mole substitution of $Cr_2O_3$. However, as amount of $Cr_2O_3$ increased, the stannate characteristic peak was decreased and shift happened at the left hand side due to Cr-dope. In composition of 0.12~0.14 mole substituted, the unreacted $Cr_2O_3$ stannate characteristic peak, which was not engaged, was shown. This result shows the maximum limit of solid solution was 0.1 mole $Cr_2O_3$. The color of the glaze, which was produced by adding 6 wt% of $Y_2Sn_{1.94}Cr_{0.06}O_7$ pigment in a lime or a lime-magnesia glaze and fired the mixture at $1260^{\circ}C$, was grayish pink with $L^*$ 70.29, $a^*$ 5.68 and $b^*$ 6.27. It showed gray with $L^*$ 68.82, $a^*$ 3.07and $b^*$ 8.13 for $Y_2Sn_{1.9}Cr_{0.1}O_7$.

A Study on the Carbon Composite Briquette Iron Manufacturing Using Fe-containing Process Wastes (함철부산물을 활용한 탄재 내장 단괴 제조에 관한 연구)

  • Yu, Jong Yeong;Yang, Dae Young;Shin, Hee Dong;Sohn, Il
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.34-43
    • /
    • 2015
  • Raw materials in steel industry decide on the productivity, quality and price competitiveness. Utilizing iron-containing by-products as raw materials for steel products can save the cost of cleaning up iron-containing by-products and solve environmental issues. Iron-containing by-products have a small particle size. If they are directly inserted in a steel making process, it cause a problem such as poor heat flow and scattering. To solve these problems and induce the additional reduction, study concern with iron ore-coal mixed briquette technique are conducted by many researchers. In this paper, method of making carbon composite briquette iron(CCBI) using iron-containing by-products was studied. The effect of composition of Fe-containing process wastes, reducing agent, flux and binder on formability of CCBI (carbon composite briquette iron) was measured.