• Title/Summary/Keyword: likelihood ratio statistic

Search Result 74, Processing Time 0.02 seconds

Clusters of Toxoplasmosis in Ganghwa-gun, Cheorwon-gun, and Goseong-gun, Korea

  • Yu, Jihye;Kim, Woojin;Chang, Yoon Kyung;Kim, Tong-Soo;Hong, Sung-Jong;Ahn, Hye-Jin;Nam, Ho-Woo;Kim, Dongjae
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.3
    • /
    • pp.251-256
    • /
    • 2021
  • We find out the clusters with high toxoplasmosis risk to discuss the geographical pattern in Gyodong-myeon and Samsan-myeon of Ganghwa-gun, Cheorwon-gun, and Goseong-gun, Korea. Seroepidemiological data of toxoplasmosis surveyed using rapid diagnostic tests for the residents in the areas in 2019 were analyzed to detect clusters of the infection. The cluster was investigated using the SaTScan program which is based on Kulldorff's scan statistic. The clusters were found with P-values in each region analyzed in the program, and the risk and patient incidence of specific areas can be examined by the values such as relative risk and log likelihood ratio. Jiseok-ri and Insa-ri were found to be a cluster in Gyodong-myeon and Seokmo-ri was the cluster in Samsan-myeon. Yangji-ri and Igil-ri were found to be a cluster in Cheorwon-gun and Madal-ri and Baebong-ri were the cluster in Goseong-gun. This findings can be used to monitor and prevent toxoplasmosis infections occurring in vulnerable areas.

Cluster exploration of water pipe leak and complaints surveillance using a spatio-temporal statistical analysis (스캔통계량 분석을 통한 상수도 누수 및 수질 민원 발생 클러스터 탐색)

  • Juwon Lee;Eunju Kim;Sookhyun Nam;Tae-Mun Hwang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.261-269
    • /
    • 2023
  • In light of recent social concerns related to issues such as water supply pipe deterioration leading to problems like leaks and degraded water quality, the significance of maintenance efforts to enhance water source quality and ensure a stable water supply has grown substantially. In this study, scan statistic was applied to analyze water quality complaints and water leakage accidents from 2015 to 2021 to present a reasonable method to identify areas requiring improvement in water management. SaTScan, a spatio-temporal statistical analysis program, and ArcGIS were used for spatial information analysis, and clusters with high relative risk (RR) were determined using the maximum log-likelihood ratio, relative risk, and Monte Carlo hypothesis test for I city, the target area. Specifically, in the case of water quality complaints, the analysis results were compared by distinguishing cases occurring before and after the onset of "red water." The period between 2015 and 2019 revealed that preceding the occurrence of red water, the leak cluster at location L2 posed a significantly higher risk (RR: 2.45) than other regions. As for water quality complaints, cluster C2 exhibited a notably elevated RR (RR: 2.21) and appeared concentrated in areas D and S, respectively. On the other hand, post-red water incidents of water quality complaints were predominantly concentrated in area S. The analysis found that the locations of complaint clusters were similar to those of red water incidents. Of these, cluster C7 exhibited a substantial RR of 4.58, signifying more than a twofold increase compared to pre-incident levels. A kernel density map analysis was performed using GIS to identify priority areas for waterworks management based on the central location of clusters and complaint cluster RR data.

Analyzing the Relationship between Environmental Consciousness and Railway Choice Behavior (환경의식과 철도이용행동의 관련성 분석)

  • Lee, Jae-Boong;Kim, Hyun;Oh, Seung Hwoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.697-705
    • /
    • 2010
  • The purpose of this research is to clarify the relation between environmental consciousness and railway usage behavior. Author would locate this research on position of basic survey to promote railway use according to Low Carbon Green Growth policy in Korea. In this research, we would perform descriptive analysis using data of research on the actual condition of railway use in 2008, Daegu, and describe its relationship. In addition, we would suggest some idea about policy which can promote railway use. The order of railway choice behavior noticed in clustering of environmental consciousness was cooperative behavior type, middle type and non-cooperative behavior type. It suggests that environmental consciousness has effect on transportation choice behavior. Specially, railway improvement isn't enough to promote railway use. And, it is advisable to carry out the improvement in such a way that it may encourage the nation to move from the current environmental consciousness stage to cooperative behavior. Moreover, we assumed Binary Probit(BP) model using SP data of time or condition of transportation expense compared with passenger car and bus. As the results, modified likelihood ratio of two BP models is favorable variables. And it occurred that mode was transferred from passenger car to railway when it showed higher social environment consciousness and low selfish environment consciousness, because t-statistic which represents selfish environment consciousness showed significance in 95% confidence level. That is, it can be described that environment consciousness affect on the intention of railway use.

Spatial effect on the diffusion of discount stores (대형할인점 확산에 대한 공간적 영향)

  • Joo, Young-Jin;Kim, Mi-Ae
    • Journal of Distribution Research
    • /
    • v.15 no.4
    • /
    • pp.61-85
    • /
    • 2010
  • Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center. $$\array{{S_{i,t}=(p_i+q_i{\frac{Y_{i,t-1}}{m_i}})(m_i-Y_{i,t-1})\;i{\in}\{1,{\cdots},I\}\;(1a)}\\{S_{j,t}=(p_j+q_j{\frac{Y_{j,t-1}}{m_i}}+{\sum\limits_{i=1}^I}{\gamma}_{ij}{\frac{Y_{i,t-1}}{m_i}})(m_j-Y_{j,t-1})\;i{\in}\{1,{\cdots},I\},\;j{\in}\{I+1,{\cdots},I+J\}\;(1b)}}$$ We rise two research questions. (1) The proposed spatial diffusion model is more effective than the Bass model to describe the diffusion of discount stores. (2) The more similar retail environment of diffusing center with that of the vicinity of the contiguous market is, the larger spatial effect of diffusing center on diffusion of the vicinity of the contiguous market is. To examine above two questions, we adopt the Bass model to estimate diffusion of discount store first. Next spatial diffusion model where spatial factor is added to the Bass model is used to estimate it. Finally by comparing Bass model with spatial diffusion model, we try to find out which model describes diffusion of discount store better. In addition, we investigate the relationship between similarity of retail environment(conceptual distance) and spatial factor impact with correlation analysis. Result and Implication: We suggest spatial diffusion model to describe diffusion of discount stores. To examine the proposed spatial diffusion model, 347 domestic discount stores are used and we divide nation into 5 districts, Seoul-Gyeongin(SG), Busan-Gyeongnam(BG), Daegu-Gyeongbuk(DG), Gwan- gju-Jeonla(GJ), Daejeon-Chungcheong(DC), and the result is shown

    . In a result of the Bass model(I), the estimates of innovation coefficient(p) and imitation coefficient(q) are 0.017 and 0.323 respectively. While the estimate of market potential is 384. A result of the Bass model(II) for each district shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. A result of the Bass model(II) shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. In a result of spatial diffusion model(IV), we can notice the changes between coefficients of the bass model and those of the spatial diffusion model. Except for GJ, the estimates of innovation and imitation coefficients in Model IV are lower than those in Model II. The changes of innovation and imitation coefficients are reflected to spatial coefficient(${\gamma}$). From spatial coefficient(${\gamma}$) we can infer that when the diffusion in the vicinity of the diffusing center occurs, the diffusion is influenced by one in the diffusing center. The difference between the Bass model(II) and the spatial diffusion model(IV) is statistically significant with the ${\chi}^2$-distributed likelihood ratio statistic is 16.598(p=0.0023). Which implies that the spatial diffusion model is more effective than the Bass model to describe diffusion of discount stores. So the research question (1) is supported. In addition, we found that there are statistically significant relationship between similarity of retail environment and spatial effect by using correlation analysis. So the research question (2) is also supported.

  • PDF

  • (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.