• Title/Summary/Keyword: lighting source controller

Search Result 17, Processing Time 0.027 seconds

Alternating Current (AC) Powered LED Lighting Technology with Constant Brightness (빛의 밝기가 일정한 교류 구동 LED 조명기술)

  • Lee, Dong Won;Ahn, Ho-Myoung;Kim, Byungcheul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.466-470
    • /
    • 2022
  • In order to widely disseminate LED lighting, LED lighting technology that directly uses AC commercial power has been recently introduced. AC powered LED lighting technology has a problem in that the light brightness of the LED changes because the voltage applied to the LED and the current flowing through the LED continuously change. In this study, when the LED current is greater than the design current, the current control signal generated by the controller is supplied to the current source to supply only the design current to the LED by increasing the voltage drop at the current source. If it is smaller than the design current, the controller is adjusted so that the current is supplied only to the LED without a voltage drop in the current source. It can be seen that the higher the maximum rectified voltage, the faster the lighting time of the LED light emitting block is, so that the power factor of the LED lighting is improved. The LED lighting technology proposed in this study enables LED lighting with constant light brightness, reduced power consumption, and long lifetime.

Using High Brightness LED Light Source Controller for Machine Vision (고휘도 LED를 이용한 머신비전용 조명광원 제어기 개발)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.311-318
    • /
    • 2014
  • This paper is to introduce a lighting source controller using high brightness LED to create a clear and reliable condition for an accurate measurement and testing, which is a core technology in clinical image system and mechanical automation system. This controller is designed to supply a stable power in a constant-current system by installing a high brightness LED driver, and to improve the reproducibility of brightness by using 32-bit ARM processor core, dividing brightness quantity into 256 levels, making the remote control and the external interface possible, and preventing and digitizing the brightness inaccuracy caused by errors of resistance values. This controller enables the lighting range to be wide and possible in a low lighting level compared to analog, adds the RS-485 communication function, and makes it for the users to control the on-off function and the dimming level by receiving date from an external device.

A Design of LED Lighting Controller for use of Solar Battery (태양전지 이용을 위한 LED 조명 제어기 설계)

  • Kim, Byun-Gon;Lee, Ok-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.18-27
    • /
    • 2011
  • LED lighting because of high efficiency, long life, friendly environment, as a general lighting of the next generation, has been substituted for incandescent bulb and fluorescent lamp. The proposed system for use of solar battery is the intelligent controller for LED street lights which is improved the method of battery charging and charging efficiency in winter to extend battery life cycle, controlled lighting current according to SoC and in steps. Also, it is implemented emotional lighting which is controlled with the surrounding environment, by using colorful sub LED to take up 10[%] of a source of total light, white LED. As a lab results, the proposed system was implemented functions to adapt to the environmental changes, and improved the charging efficiency and battery life cycle.

A Study on the Production of a Convergence Color-Responsive Lighting Bookcase (색상에 반응하는 융복합 조명 책꽂이 제작에 관한 연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.267-273
    • /
    • 2015
  • Recently, a wide range of products incorporating cutting-edge technology are being introduced in various sectors of design. Belkin's WeMo or Phillips' Hue are representative examples. In this context, the color-responsive lighting bookcase is a design product that would satisfy the needs of contemporary consumers who seek entertainment in their purchases. By installing lightings that change color according to the user's behavior, this design reconceptualizes the bookcase as a source of entertainment rather than a mundane object of household furnishing. The lighting apparatus can be detached and reattached, serving as stand-alone equipment. The lighting bookcase is modularized, comprising extensions equipped with MCU (Micro Controller Unit), RGB LED and color sensors. The bookcase as a whole is extendable towards four directions up to nine units with the lighting bookcase at the center. The extended, multiple lighting bookcases are wired to receive power from the main bookcase, and are equipped with RGB LEDs but not with MCUs or color sensors. Receiving power and color signals from the main lighting bookcase, the sub-bookcases feature changing shades of color. Also, it includes IoT(internet of Things). This study is a proposal of a design product, modularized to control the shades of the bookcase lighting using these sensors.

펜던트형 감성조명 LED 등기구 모듈개발

  • Seo, Dong-Won;Kim, Yeong-Geun;Kim, Jin-Sa;Kim, Geum-Taek;Choe, Un-Sik;Song, Min-Jong;Song, Myeong-Hyeon;Park, Chun-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.264-264
    • /
    • 2009
  • The sensitivity lighting of pendant type used Micro-controller AVR, embodiment method for Munsell chromaticity diagram system and adoption method for light source lens respectively. About a plan design of light fixture, LED circuit designed flow chart of circuits and LED driver of organizations in electron device. For used Solidworks soft ware program, LED light source must take a heat shink part and LED light fixture module for sensitivity lighting of pendant type into considerations

  • PDF

Emotional Lives of Students in the Classroom Space LED Fluorescent Lamp for Sensitivity Lighting (학생들의 생활공간인 교실에 감성조명 적용을 위한 LED 형광등 개발연구)

  • Han, Sang-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3446-3450
    • /
    • 2010
  • This study aims to make class lighting that gives classroom to stability and activity. For the purpose, we develop a emotional lighting LED using LED source which is a environment-friendly and the lighting fo the next generation. We composed emotional lighting LED as controller for color conversion, power supply for supplying LED lamp a stable power, PCB board for LED lamp and lamp and case. We developed designed emotional lighting LED and proved that the system works and one can get intended color.

Indoor Surveillance Camera based Human Centric Lighting Control for Smart Building Lighting Management

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Lee, Min Woo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.207-212
    • /
    • 2020
  • The human centric lighting (HCL) control is a major focus point of the smart lighting system design to provide energy efficient and people mood rhythmic motivation lighting in smart buildings. This paper proposes the HCL control using indoor surveillance camera to improve the human motivation and well-beings in the indoor environments like residential and industrial buildings. In this proposed approach, the indoor surveillance camera video streams are used to predict the day lights and occupancy, occupancy specific emotional features predictions using the advanced computer vision techniques, and this human centric features are transmitted to the smart building light management system. The smart building light management system connected with internet of things (IoT) featured lighting devices and controls the light illumination of the objective human specific lighting devices. The proposed concept experimental model implemented using RGB LED lighting devices connected with IoT features open-source controller in the network along with networked video surveillance solution. The experiment results are verified with custom made automatic lighting control demon application integrated with OpenCV framework based computer vision methods to predict the human centric features and based on the estimated features the lighting illumination level and colors are controlled automatically. The experiment results received from the demon system are analyzed and used for the real-time development of a lighting system control strategy.

Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system (인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF

Investigation on the Reduction of Radiated Emission Noise in a High Power LED Module Circuit (고출력 LED 구동회로의 방사잡음 저감에 관한 연구)

  • Suh, Jung-Nam;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1574_1575
    • /
    • 2009
  • This paper investigates the reduction of RE(Radiated Emission) noise in a high power LED module circuit using PWM(Pulse Width Module) switching controller circuit. Poorly designed LED lighting module can experience the RE and CE(Conducted Emission) noise problem. This paper propose the reduction of noise source and improvement of EMI filter design in a high power LED lighting module. The experimental and simulation results showed that reduce the RE noise level effectively.

  • PDF

Measurement System of Photosynthetic Photon Flux Distribution and Illumination Efficiency of LED Lamps for Plant Growth

  • Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.314-318
    • /
    • 2012
  • Purpose: This study was conducted to develop a measurement system for determining photosynthetic photon flux (PPF) distribution and illumination efficiency of LED lamps. Methods: The system was composed of a linear moving sensor part (LMSP), a rotating part to turn the LMSP, a body assembly to support the rotating part, and a motor controller. The average PPF of the LED lamp with natural cooling and water cooling was evaluated using the measurement system. Results: The PPF of LED lamp with water cooling was 3.1-31.7% greater than that with natural cooling. Based on the measured value, PPF on the horizontal surface was predicted. Illumination efficiency of the LED lamp was slightly increased with water cooling by 3.4%, compared with natural cooling. A simulation program using MATLAB was developed to analyze the effects of the vertical distance from lighting sources to growing bed, lamp spacing, and number of LED lamps, on the PPF distribution on the horizontal surface. The uniformity of the PPF distribution of the LED lamps was fairly improved with 15 cm spacing, as compared to the 5 cm spacing. By simulation, PPF of $217.0{\pm}27.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was obtained at the vertical distance of 40 cm from six LED lamps with 12 cm spacing. This simulated PPF was compared to the measured one of $225.9{\pm}25.6{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. After continuous lighting of 346 days, the relative PPF of LED lamps with water cooling and natural cooling was decreased by 6.6% and 22.8%, respectively. Conclusions: From these results, it was concluded that the measurement system developed in this study was useful for determining PPF and illumination efficiency of artificial lighting sources including LED lamp.