• Title/Summary/Keyword: light trapping

Search Result 132, Processing Time 0.032 seconds

OPTIMIZATION OF $P^+$ SEEDING LAYER FOR THIN FILM SILICON SOLAR CELL (결정질 실리콘 박막 태양전지의 $P^+$ 씨앗층 형성 최적화에 관한 연구)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.168-171
    • /
    • 2005
  • Thickness optimization of heavily doped p-type seeding layer was studied to improve performance of thin film silicon solar cell. We used liquid phase epitaxy (LPE) to grow active layer of $25{\MU}m$ thickness on p+ seeding layer. The cells with p+ seeding layer of $10{\mu}m\;to\;50{\mu}m$ thickness were fabricated. The highest efficiency of a cell is $12.95\%$, with Voc=633mV, $Jsc=26.5mA/cm^2,\;FF=77.15\%$. The $P^+$ seeding layer of the cell is $20{\mu}m$, thick. As thicker seeding layer than $20{\mu}m$, the performance of the cell was degraded. The results demonstrate that the part of the recombination current is due to the heavily doped seeding layer. Thickness of heavily doped p-type seeding layer was optimized to $20{\mu}m$. The performance of solar cell is expected to improve with the incorporation of light trapping as texturing and AR coating.

  • PDF

Characterization of Surface Textured Silicon Substrates by SF6/O2 Gas Mixture (SF6/O2 혼합가스에 의한 실리콘 웨이퍼의 표면 텍스쳐링 특성)

  • Kang, Min-Seok;Joo, Sung-Jae;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.345-348
    • /
    • 2012
  • The optical losses associated with the reflectance of incident radiation are among the most important factors limiting the efficiency of a solar cell. Therefore, photovoltaic cells normally require special surface structures or materials, which can reduce reflectance. In this study, nano-scale textured structures with anti-reflection properties were successfully formed on silicon. The surface of sicon wafer was etched by the inductively coupled plasma process using the gaseous mixture of $SF_6+O_2$. We demonstrate that the reflection characteristic has significantly reduced by ~0% compared with the flat surface. As a result, the power efficiency $P_{max}$ of the nano-scale textured silicon solar cell were enhanced up to 20%, which can be ascribed primarily to the improved light trapping in the proposed nano-scale texturing.

Photofield-Effect in Amorphous InGaZnO TFTs

  • Fung, Tze-Ching;Chuang, Chiao-Shun;Mullins, Barry G.;Nomura, Kenji;Kamiya, Toshio;Shieh, Han-Ping David;Hosono, Hideo;Kanicki, Jerzy
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1208-1211
    • /
    • 2008
  • We study the amorphous In-Ga-Zn-O thin-film transistors (TFTs) properties under monochromatic illumination ($\lambda=420nm$) with different intensity. TFT off-state drain current ($I_{DS_off}$) was found to increase with the light intensity while field effect mobility ($\mu_{eff}$) is almost unchanged; only small change was observed for sub-threshold swing (S). Due to photo-generated charge trapping, a negative threshold voltage ($V_{th}$) shift is also observed. The photofield-effect analysis suggests a highly efficient UV photocurrent conversion in a-IGZO TFT. Finally, a-IGZO mid-gap density-of-states (DOS) was extracted and is more than an order lower than reported value for a-Si:H, which can explain a good switching properties of the a-IGZO TFTs.

  • PDF

The effect of surface texturization on the thermal and electric characteristics of photovoltaic devices (표면 texturizaton에 따른 photovoltaic device의 열적 전기적 특성)

  • Jung, Ji-Chul;Jung, Byung-Eon;Lee, Jung-Ho;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.133-133
    • /
    • 2010
  • We studied the thermal and electric effect of 2D and 3D p-n photovoltaic diode structures with and without surface texturing. By analyzing the numerical simulation results of I-V characteristics and lattice temperature distributions, we systematically studied the effect of different texturing structures and different doping concentration on the characteristics of the silicon p-n photovoltaic devices. The, efficiency of the device with the surface texturing shows more than ~ 2% enhancement compared to the reference devices without texturing. The tendency of the efficiency of doping concentration has been studied with boron doping of $10^{14}{\sim}10^{17}cm^{-3}$ and phosphorus doping of $10^{15}cm^{-3}$. In addition to that, the study of changing phosphorus doping of $10^{15}{\sim}10^{18}cm^{-3}$ with boron doping of $10^{14}cm^{-3}$ has been examined. It has been shown that the texturing structure not only improves the light trapping but also plays an important role in the heat radiation.

  • PDF

유·무기 하이브리드 태양전지에 적용된 나노와이어 형상 조절 및 특성분석

  • Kim, Min-Su;Kim, Jun-Hui;Lee, Hae-Seok;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.487.1-487.1
    • /
    • 2014
  • 현재 전 세계 태양광 시장의 주류를 이루는 단결정 실리콘 태양전지의 효율적 한계를 뛰어넘기 위하여 여러 가지 기술적 구조적 시도들이 이루어지고 있다. 그 중 기존의 피라미드 형태의 텍스쳐링 표면 대신 나노와이어 형상을 가지는 태양전지 개발이 주목을 받고 있다. 실리콘 웨이퍼 표면에 나노와이어가 수직 배열되어 있거나 텍스쳐링 표면에 나노와이어 형상이 있을 경우 SiNx가 증착된 피라미드 텍스쳐링 표면보다 반사도가 월등히 낮아져 light trapping을 기대할 수 있어 태양전지 개발에 응용하기 위한 나노와이어 형상 최적화에 본 연구의 목적이 있다. 실리콘 나노와이어 합성법에는 여러가지 방법들이 있으나 본 연구에서는 비교적 짧은 시간과 상온에서 공정이 이루어지는 무전해 식각법을 이용하여 실리콘 나노와이어를 합성하였다. 무전해 식각법은 은 이온과 실리콘 사이에서 일어나는 산화-환원 반응이 나노와이어 합성의 주요 기전이기 때문에 균일한 나노와이어를 형성하기 위하여 균일한 은 박막 형성과 적절한 반응시간이 요구된다. 본 연구에서는 반응시간을 조절하여 나노와이어의 길이 변화와 반사도의 변화를 FE-SEM과 UV-Vis-NIR spectroscopy를 통하여 관찰하였고 그 결과 나노와이어가 실리콘 웨이퍼 표면에 수직 배열되어 있는 형태와 텍스쳐링 표면에 나노와이어 형상이 있는 경우 SiNx가 증착된 피라미드 텍스쳐링 표면에 비해 월등히 향상된 반사율을 얻을 수 있었다.

  • PDF

The fabrication of textured ZnO:Al films using HCI wet chemical etching (후 식각법을 이용한 Textured ZnO:Al 투명전도막 제조)

  • Yoo, Jin-Su;Lee, Jeong-Chul;Kang, Ki-Hwan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1482-1484
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures $({\leq}300^{\circ}C)$, the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Cyclized Induction of Phenylalanine Ammonia-Lyase Gene Expression in Rhizoctonia solani-Infected Stems of Tomato

  • Yeo, Yun-Soo;Kim, Soo-Jin;Koo, Bon-Sung;Lee, Churl-Ho;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.151-156
    • /
    • 2004
  • Soil-borne fungal pathogens such as Verticillium and Rhizoctonia can colonize in the stem tissue of plant through root and lead to wilting symptoms of plant by blocking. water transportation. During the colonization of Rhizoctonia solani in the vascular tissue of tomato stems, particularly, phenylalanine ammonia-lyase (PAL) gene induction pattern was cyclized showing peak induction at two different time points (10 and 80 h) after fungal spores inoculation in vivo. In leaves or roots, however, no such cycling pattern was observed. The first induction peak may be due to an initial sporulation events leading to a second induction peak by a proliferation of fungal spores to the upper stems or other tissues from an initial spore trapping sites. Tomato PAL gene was also dramatically induced by wounding, light illumination and mercury chloride treatment but was not cyclized. Mercury chloride showed the earliest induction with all tissues even at half an hour after treatment.

Study on Improving Surface Structure with Changing RF Power Conditions in RIE (reactive ion etching) (반응성 이온 건식식각에서 RF Power 변화에 따른 표면 조직화 개선 연구)

  • Park, Seok-Gi;Lee, Jeong In;Kang, Min Gu;Kang, Gi-Hwan;Song, Hee-eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.455-460
    • /
    • 2016
  • A textured front surface is required in high efficiency silicon solar cells to reduce reflectance and to improve light trapping. Wet etching with alkaline solution is usually applied for mono crystalline silicon solar cells. However, alkali texturing method is not appropriate for multi-crystalline silicon wafers due to grain boundary of random crystallographic orientation. Accordingly, acid texturing method is generally used for multi-crystalline silicon wafers to reduce the surface reflectance. To reduce reflectivity of multi-crystalline silicon wafers, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE condition by different RF power condition (100, 150, 200, 250, 300 W).

EFFECT OF CIGARETTE PAPER ON CIGARETTEAPPEARANCE BURN RATE AND SIDESTREAM SMOKE

  • Jr Vladimir Hampl
    • Proceedings of the Korean Society of Tobacco Science Conference
    • /
    • 2000.05a
    • /
    • pp.12-21
    • /
    • 2000
  • The smoke from a burning cigarette is classified as mainstream, which is the smoke inhaled by the smoker during a puff, and sidestream, which is defined by ISO 10185 as all smoke which leaves a cigarette during the smoking process other than from the butt end. Most of the sidestream smoke is generated during static burn, that is, in between puffs. The amount of sidestream smoke generated by a cigarette depends on the cigarette construction, tobacco blend, and properties of the cigarette paper, The main paper properties affecting sidestream smoke generation are: porosity, basis weight, type and amount of filler, type and amount of burn additive.Sidestream smoke is composed of a visible phase (small liquid droplets) and an invisible phase (gaseous molecules). This paper focuses on the visible portion of the sidestream smoke. Optical methods, which are based on the relationship between light scattering and density of the rising plume of smoke, have been used successfully by the industry. However, the present trend is to use gravimetric methods where the particulate matter is captured on a Cambridge(R) filter pad and weighed. The gaseous portion of the sidestream smoke, which does not contribute to the visible sidestream smoke, passes through the Cambridge filter pad.Sidestream smoke reduction is achieved by modifying certain mass transport processes occurring in a smoldering cigarette. There are four main pathways for reducing sidestream smoke: A) less tobacco burned, B) slower rate of tobacco combustion, C) more efficient trapping of smoke by the cigarette paper, and D) more complete combustion of tobacco. This paper discusses how the physical properties of paper and cigarette construction affect sidestream smoke reduction via the above four mechanisms.

  • PDF

Optical properties of the $O_2$ plasma treatment on BZO (ZnO:B) thin films for TCO of a-Si solar cells

  • Yoo, Ha-Jin;Son, Chang-Gil;Cho, Won-Tea;Park, Sang-Gi;Choi, Eun-Ha;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.454-454
    • /
    • 2010
  • In order to achieve a high efficient a-Si solar cell, the TCO (transparent conductive oxide) substrates are required to be a low sheet resistivity, a high transparency, and a textured surface with light trapping effect. Recently, a zinc oxide (ZnO) thin film attracts our attention as new coating material having a good transparent and conductive for TCO of solar cells. In this paper the optical properties of $H_2$ post-treated BZO (boron doped ZnO, ZnO:B) thin film are investigated with $O_2$-plasma treatment. The BZO thin films by MOCVD (Metal Organic Chemical Vapor Deposition) are investigated and the samples of $H_2$ post-treated BZO thin film are tested with $O_2$-plasma treatment by plasma treatment system with 13.56 MHz as RIE (Reactive Ion Etching) type. We measured the optical properties and surface morphology of BZO thin film with and without $O_2$-plasma treatment. The optical properties such as transmittance, reflectance and haze are measured with integrating sphere and ellipsometer. This result of the BZO thin film with and without $O_2$-plasma treatment is application to the TCO for solar cells.

  • PDF