DOI QR코드

DOI QR Code

Study on Improving Surface Structure with Changing RF Power Conditions in RIE (reactive ion etching)

반응성 이온 건식식각에서 RF Power 변화에 따른 표면 조직화 개선 연구

  • Park, Seok-Gi (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Lee, Jeong In (Photovoltaic Laboratory, Korea Institute of Energy Research) ;
  • Kang, Min Gu (Photovoltaic Laboratory, Korea Institute of Energy Research) ;
  • Kang, Gi-Hwan (Photovoltaic Laboratory, Korea Institute of Energy Research) ;
  • Song, Hee-eun (Photovoltaic Laboratory, Korea Institute of Energy Research) ;
  • Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
  • 박석기 (충남대학교 에너지과학기술대학원) ;
  • 이정인 (한국에너지기술연구원 태양광연구실) ;
  • 강민구 (한국에너지기술연구원 태양광연구실) ;
  • 강기환 (한국에너지기술연구원 태양광연구실) ;
  • 송희은 (한국에너지기술연구원 태양광연구실) ;
  • 장효식 (충남대학교 에너지과학기술대학원)
  • Received : 2015.07.01
  • Accepted : 2016.06.30
  • Published : 2016.08.01

Abstract

A textured front surface is required in high efficiency silicon solar cells to reduce reflectance and to improve light trapping. Wet etching with alkaline solution is usually applied for mono crystalline silicon solar cells. However, alkali texturing method is not appropriate for multi-crystalline silicon wafers due to grain boundary of random crystallographic orientation. Accordingly, acid texturing method is generally used for multi-crystalline silicon wafers to reduce the surface reflectance. To reduce reflectivity of multi-crystalline silicon wafers, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE condition by different RF power condition (100, 150, 200, 250, 300 W).

Keywords

References

  1. J. S. Yoo, Sol. Energy, 84, 730-734 (2010). [DOI: http://dx.doi.org/10.1016/j.solener.2010.01.031]
  2. J. S. Yoo, G. J. Yu, and J. S. Yi, Sol. Energ. Mat. Sol. C., 95, 2-6 (2011). [DOI: http://dx.doi.org/10.1016/j.solmat.2010.03.029]
  3. K. H. Kim, S. K. Dhungel, S. W. Jung, D. Mangalaraj, and J. Yi, Sol. Energ. Mat. Sol. C., 92, 960-968 (2008). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.02.036]
  4. G. Kumaravelu, M. M. Alkaisi, and A. Bittar, Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE, 258-261 (2002).
  5. Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, Sol. Energy, 85, 1574-1578 (2011). [DOI: http://dx.doi.org/10.1016/j.solener.2011.03.012]
  6. J. S. Yoo, G. J. Yu, and J. S. Yi, Materials Science and Engineering B, 159-160, 333-337 (2009). [DOI: http://dx.doi.org/10.1016/j.mseb.2008.10.019]
  7. H. Jansen, M. de Boer, J. Burger, R. Legtenberg, and M. Elwenspoek, Microelectronic Engineering, 27, 475-480 (1995). [DOI: http://dx.doi.org/10.1016/0167-9317(94)00149-O]
  8. W. A. Nositschka, O. Voigt, P. Manshanden, and H. Kurz, Sol. Energ. Mat. Sol. C., 80, 227-237 (2003). [DOI: http://dx.doi.org/10.1016/j.solmat.2003.06.003]
  9. G. Kumaravelu, M. M. Alkaisi, D. Macdonald, J. Zhao, B. Rong, and A. Bittar, Sol. Energ. Mat. Sol. C., 87, 99-106 (2005). [DOI: http://dx.doi.org/10.1016/j.solmat.2004.07.015]
  10. B. Prasad, S. Bhattacharya, A. K. Saxena, S. R. Reddy, and R. K. Bhogra, Sol. Energ. Mat. Sol. C., 94, 1329-1332 (2010). [DOI: http://dx.doi.org/10.1016/j.solmat.2009.06.026]
  11. D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M, Soriano, J. Lucas, and P. R. Cabarrocas, Materials Science and Engineering B, 177, 1509-1513 (2012). [DOI: http://dx.doi.org/10.1016/j.mseb.2012.03.038]
  12. D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Rudy, S. Winderbaum, and A. Leo, Sol. Energy, 76, 277-283 (2004). [DOI: http://dx.doi.org/10.1016/j.solener.2003.08.019]