• Title/Summary/Keyword: light tip distance

Search Result 26, Processing Time 0.024 seconds

Comparison of Surface Microhardness of the Flowable Bulk-Fill Resin and the Packable Bulk-Fill Resin according to Light Curing Time and Distance

  • Hyung-Min Kim;Moon-Jin Jeong;Hee-Jung Lim;Do-Seon Lim
    • Journal of dental hygiene science
    • /
    • v.23 no.2
    • /
    • pp.123-131
    • /
    • 2023
  • Background: As a restorative material used to treat dental caries, the light-curing type resin is widely used, but it has the disadvantage of polymerization shrinkage. The Bulk-Fill composite resin was developed to solve these shortcomings, but the existing research mainly focused on comparing the physical properties of a composite resin and a Bulk-Fill resin. A study on the light curing time and distance of the Bulk-Fill resin itself tend to be lacking. Methods: This study compares the surface microhardness of specimens prepared by varying the light curing time and distance of smart dentin replacement (SDR) as a flowable Bulk-Fill resin and Tetric N-ceram as a packable Bulk-Fill resin, and confirms the polymerization time and distance that becomes the optimum hardness. To determine the hardness of the specimen, it was measured using the Vickers Hardness Number (Matsuzawa MMT-X, Japan). Results: In SDR, the surface microhardness decreased as the distance increased in all time groups in the change distance from the curing tip. In the change of light curing time with respect to the distance from curing tip, the surface microhardness increased as the time increased. In Tetric N-ceram, the surface microharness showed no significant difference in the change of the distance of curing tip in the group of 20 and 60 second. But in the group of 10 and 40 seconds, decreased as the distance increased. The surface microharness increased as the light curing time increased in all distance groups. Conclusion: When using SDR and Tetric N-ceram in clinical practice, it is considered that as the distance from the polymerization reactor tip increases, a longer light curing time than the polymerization time recommended by the manufacturer is required.

Investigation of the Shear Bond Strength of Orthodontic Buttons by Light Curing Using an Extended Optic Fiber (광섬유를 이용한 광중합에 따른 교정용 버튼의 전단결합강도에 관한 연구)

  • Yoon, Garam;Lee, Nanyoung;Lee, Sangho;Jih, Myeongkwan;Choi, Wonseok;Sung, Minah
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.1
    • /
    • pp.105-114
    • /
    • 2021
  • The objective of this study is to analyze the shear bond strength of orthodontic buttons according to light tip distance and optic fiber diameter when an extended optic fiber was applied to the tip of a curing light unit. In this study, 315 extracted premolar teeth were divided into 3 groups. Orthodontic buttons were attached using no optic fibers (Group I), 3.0 mm diameter optic fibers (Group II), or 5.0 mm diameter optic fibers (Group III). Each group was divided into subgroups A - C (5.0, 10.0, and 15.0 mm light tip distance), respectively. Shear bond strength was then measured while varying the light tip distance. In group I, shear bond strength significantly decreased as the light tip distance increased. When the shear bond strength was evaluated according to the optic fiber diameter, no statistical significance was observed in group of 5.0 mm light tip distance. Compared with group IB, group IIIB showed significantly greater shear bond strength. Compared with group IC, all groups using 3.0 or 5.0 mm diameter optic fibers showed significantly greater shear bond strength. Therefore, when a curing light unit has poor accessibility, optic fibers with a large diameter should be considered.

INFLUENCE OF TIP DISTANCE ON DEGREE OF CONVERSION OF COMPOSITE RESIN IN CURING WITH VARIOUS LIGHT SOURCES (광원에 따른 조사거리의 증가가 복합레진의 중합도에 미치는 영향)

  • Kim, Sang-Bae;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.273-279
    • /
    • 2004
  • Recently, newly developed single high-intensity LED curing lights for composite resins are claimed to have a higher intensity than previous LED curing lights and to results in optimal properties and short curing time. The purpose of this study was to determine the curing effectiveness of the curing units and to evaluate the relationship between the degree of polymerization and distance from curing light tip end to resin surface. One composite resin was tested(Filtek Z250). Thin film specimens were cured with a LED curing unit(Elipar Freelight 2, 10s), Plasma Arc curing unit(Flipo, 6s), Halogen curing light(XL3000, 20s) at four curing light tip to the resin surface(0mm, 2mm, 4mm, 6mm). Degree of conversion of composite resins were determined by a Fourier Transform Infrared Spectrometer(FTIR). From the present study, the following results were obtained. 1. In all curing units, relative light intensity was significantly decreased according to the increase of distance of light tip to the resin surface(p<0.05). LED curing units showed a higher percentile decrease in intensity than other curing units. 2. In all curing units, degree of conversion was decreased as increase of the distance but no statistically significant difference(p>0.05) except between 4mm and 6mm(p<0.05). 3. When comparing degree of conversion of light curing units at each distance(0mm, 2mm, 4mm, 6mm), LED curing light had a higher degree of conversion than plasma arc and halogen curing lights at 0, 2, 4mm(p<0.05). At 6mm, there was a no significant difference among the curing units(p>0.05).

  • PDF

A STUDY ON THE CHANGES IN POLYMERIZATION OF LIGHT-ACTIVATED COMPOSITE RESIN WITH VARIOUS EXPOSURE TIME AND DISTANCE (광중합형 복합레진의 중합시간과 거리에 따른 중합도의 변화)

  • Ahn, Myung-Ki;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.293-299
    • /
    • 2001
  • The aim of this study was to evaluate the effect of the distance of the light tip to the surface of restoration and exposure time on the polymerization of surface and 2mm below the surface of light-activated composite resins. Two light-activated composite resins were used. From the experiment, the following results were obtained. 1. Relative light intensity rapidly decreased when distance of the light tip to the surface of material is more than 2mm(p<0.05). 2. In all groups, microhardness was increased according to the increase of relative light intensity and exposure time(p<0.05). 3. The distance of the light tip to the surface of restoration and exposure time more affected 2mm below the surface rather than the surface(p<0.05). 4. Although exposure time was increased, difference of microhardness of the 2mm below the surface with the distance of the light tip to the surface of restoration was relatively high in Z100 between below 4mm and other groups and Z250 between below 2mm and other groups(p<0.05).

  • PDF

A STUDY ON THE MODE OF POLYMERIZATION OF LIGHT-CURED RESTORATIVE MATERIALS CURED WITH PLASMA ARC LIGHT CURING UNIT (Plasma arc light curing unit을 이용한 광중합형 수복재의 중합양상)

  • Woo, Youn-Sun;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.262-269
    • /
    • 2002
  • The purpose of this study was to compare the effect of distance of light tip to resin surfaces and exposure time on the polymerization of surface and 2 mm subsurface of composite resins cured with two light sources; conventional halogen light (XL 3000, 3M, U.S.A.) and plasma arc light (Flipo, LOKKI, France) and compare the uniformity of polymerization from the center to the periphery of resin surfaces according to polymerization diameter cure with two light sources. From the experiment, the following results were obtained. 1. Difference of relative light intensity decrease in plasma arc light smaller than that of conventional halogen light(p<0.05). 2. In all groups, microhardness of top surfaces was decreased when distance of the light tip to resin surfaces is more than 2mm and increased according to increase of exposure time(p<0.05). 3. Difference of microhardness of the 2mm subsurface was rapidly decreased when distance of light tip to resin surfaces is more than 4mm(except, plasma arc light exposure time of 3 seconds). and the distance of light tip to resin surfaces and exposure time more affected 2mm subsurface rather than top surface(p<0.05). 4. Although exposure time was increased, difference of microhardness of the 2mm subsurface with the distance of light tip to resin surfaces was relatively high in groups between below 4mm and 6 mm(p<0.05). 5. Plasma arc light exposure time of 6 to 9 seconds produced microhardness values and microhardness change according to various distance similar to those produced with 40 to 80 second exposure to a conventional halogen light(p>0.05). 6. In all groups, microhardness was decreased gradually from the center to the periphery of resin surfaces(p<0.05).

  • PDF

A STUDY ON THE HARDNESS IN VISIBLE LIGHT COMPOSITE RESIN (광중합(光重合) 레진의 경도측정(硬度測定)에 관(關)한 연구(硏究))

  • Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.179-188
    • /
    • 1989
  • The purpose of this study was to measure Micro vicker's hardness of 4 kinds of anterior Composite resins (Pyrofil light bond anterior, Lite-fil anterior, Photo clear fil anterior, Silux) and 6 kinds of posterior Composite resin (Pyrofil light bond posterior. Lite-fil posterior, Photo clear fil posterior, Occlusin posterior, Palfique light posterior, P-30, posterior) according to deference of depth and distance of light tip from surface of composite resin. Each composite resin was filled into Teflon tube of 5mm in diameter and 5mm in depth, celluloid matrix was covered and the light in accordance with each composite resin was irradiated in distance of zero millimeter and 1 cm from light tip to surface of composite resin for 30 seconds. Specimens were sectioned longitudinally with cutting device. Microvicker's hardness measurements ware made at the depth of surface, 1mm, 2mm, 3mm, 4mm and 5mm from the surface to deep portion. Vicker's hardness numbers were taken on each depth under 200gm load for 30 seconds with MVK-E. The following results were: 1. The highest hardness value was measured at 1 mm depth. Then the deeper the depth, the lesser the hardness was observed. 2. The hardness value of anterior composite resins is lower than one of posterior composite resins. 3. Hardness number of composite resin irradiated in distance of zero millimeter from surface of composite resin was higher than one of 1 cm from surface of composite resin. 4. The pattern of hardness change at varying depth was similar to all the experimental material with no relation to distance of light from specimen.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTHS OF VISIBLE LIGHT-CURED GLASS IONOMER CEMENT WITH SEVERAL LIGHT-CURING UNITS (수종의 광중합기를 이용한 교정용 광중합형 글라스 아이오노머 시멘트의 전단 결합 강도에 관한 연구)

  • Kim, Min-Soo;You, Seoung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • The purpose of this study was to assess the effect of light-tip distance on the shear bond strength of a visible light-cured glass ionomer cement(Fuji Ortho LC ; GC, Japan) cured with three different light curing units : a halogen light(Elipar Trilight ; 3M ESPE, Seefeld, Germany), a Light Emitting Diode (LED, Elipar Freelight2 ; 3M ESPE, Seefeld, Germany) and a plasma arc light (Flipo ; LOKKI, France). 1. When used at a distance of 0mm from the bracket, the three light curing units showed no statistically different shear bond strengths. At distance of 3 and 6mm, no significant differences were found between the halogen and plasma arc lights, but both had significantly higher shear bond strengths than the LED light. 2. The halogen light and plasma arc light showed that no significant differences in bond strength were found among the three distances. Using the LED light, a greater light-tip distance produced significantly lower shear bond strengths.

  • PDF

Study on Macroscopic Spray and Spray Pattern Characteristics of Gasoline Direct Injection Injector for the Variation of Injection Pressure (분사압력 변화에 따른 가솔린 직접분사 인젝터의 거시적 분무와 분무패턴 특성에 관한 연구)

  • Park, Jeonghyun;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • The purpose of this study is to investigate the macroscopic spray characteristics and spray pattern of a gasoline direct injection (GDI) injector according to the increase of injection pressure. The macroscopic spray characteristics, such as a spray tip penetration and spray angle, were measured and analyzed from the frozen spray images, which are obtained from the spray visualization system including the high-speed camera, light-source, long-distance microscope (LDM). The spray pattern was analyzed through the deviation of the center of the spray plum and images were acquired using Nd: YAG Laser and ICCD(Intensified charge coupled device) camera. From the experiment and analysis, it revealed that the injection pressure have a significant influence on the spray tip penetration and spray pattern. However, the injection pressure have little influence on the spray angle. The increase of injection pressure induced the reduction of a closing delay. In addition, the deviation of spray center increase with the increase of injection pressure and the distance from a nozzle tip.

Distances to Host Galaxies of Type IIP Supernovae in Intensive Monitoring Survey of Nearby Galaxies using Photometric Color Method

  • Kim, Sophia;Im, Myungshin;Choi, Changsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.85.4-85.4
    • /
    • 2019
  • Supernovae (SNe) are well known as good cosmological distance probes owing to their brightness and well-characterized light curve property. Specifically, type Ia SNe have contributed greatly to our understanding of acceleration of cosmic expansion. However, type IIP supernovae occur most frequently (~ 40% of all) at low and high redshift. As knowledge on the type IIP SNe increases, distance measurement methods using type IIP SNe have evolved. In this study, we apply Photometric Color Method (PCM), which needs only photometric data using properties of plateau on type IIP SNe light curves, to measure distances of several host galaxies of SNe IIP from the Intensive Monitoring Survey of Nearby Galaxies (IMSNG). The daily monitoring of galaxies at < 50 Mpc allows us to construct a dense light curve of SNe that occurred in our target galaxies. We observed two SNe IIP, SN2014cx and SN2017eaw and measured distances to their host galaxies, NGC 337 and NGC6946 respectively. Our results are comparable with other secondary distance measurement methods, 4-5 Mpc, however smaller than the result derived from the Tip of Red Giant Branch (TRGB) method, $6.7{\pm}0.2$ and $7.7{\pm}0.3Mpc$.

  • PDF

Estimation of Spatial Variations in a Light Source by Optical Fiber Sensory System (광섬유를 이용한 광원 위치의 미세 변위 추정)

  • Kim, Ji-Sun;Jung, Gu-In;Lee, Tae-Hee;Choi, Ju-Hyeon;Oh, Han-Byeol;Kim, A-Hee;Park, Hee-Jung;Kim, Kyung-Seop;Jun, Jae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1283-1289
    • /
    • 2013
  • The purpose of this study is to find the new method for estiming the spatial variations in a light source with utilizing the optical fiber sensory system. With this aim, firstly the asymmetry in the beam profile of a light source is evaluated by using the tipped optical fiber with 0, 10, 20, 30, 40, 45-degree angle. Secondly the variation of position in a light source is estimated by adjusting the relative position between the light source unit (XYZ stage, LED, Optical fiber) and the receiver unit (Photodiode, XYZ stage). Our experimental results show that the spatial variation of a light source can be resolved in terms of the variations in beam profile with varying the tip angle of an optical fiber and adjusting the relative distance between the light source unit and the receiver.