• 제목/요약/키워드: ligand recognition

검색결과 42건 처리시간 0.028초

A Machine Learning Based Method for the Prediction of G Protein-Coupled Receptor-Binding PDZ Domain Proteins

  • Eo, Hae-Seok;Kim, Sungmin;Koo, Hyeyoung;Kim, Won
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.629-634
    • /
    • 2009
  • G protein-coupled receptors (GPCRs) are part of multi-protein networks called 'receptosomes'. These GPCR interacting proteins (GIPs) in the receptosomes control the targeting, trafficking and signaling of GPCRs. PDZ domain proteins constitute the largest protein family among the GIPs, and the predominant function of the PDZ domain proteins is to assemble signaling pathway components into close proximity by recognition of the last four C-terminal amino acids of GPCRs. We present here a machine learning based approach for the identification of GPCR-binding PDZ domain proteins. In order to characterize the network of interactions between amino acid residues that contribute to the stability of the PDZ domain-ligand complex and to encode the complex into a feature vector, amino acid contact matrices and physicochemical distance matrix were constructed and adopted. This novel machine learning based method displayed high performance for the identification of PDZ domain-ligand interactions and allowed the identification of novel GPCR-PDZ domain protein interactions.

Modulation of TNFSF expression in lymphoid tissue inducer cells by dendritic cells activated with Toll-like receptor ligands

  • Han, Sin-Suk;Koo, Ji-Hye;Bae, Jin-Gyu;Kim, Soo-Chan;Baik, Song;Kim, Mi-Yeon
    • BMB Reports
    • /
    • 제44권2호
    • /
    • pp.129-134
    • /
    • 2011
  • Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.

Peptide phage display 기술을 이용한 나노입자의 materials recognition 응용 - Part I: LaPO4 및 TiO2 나노입자를 이용한 기초연구 (Application of Nanoparticles for Materials Recognition using Peptide Phage Display Technique- Part I: Preliminary study using LaPO4 and TiO2 nanoparticles)

  • 이창우;김민정;;김세연;;;좌용호;;이재성
    • 대한금속재료학회지
    • /
    • 제46권1호
    • /
    • pp.6-12
    • /
    • 2008
  • Peptides with specific sequences against $LaPO_4$ and $TiO_2$ nanoparticles were discovered through peptide phage display technique as an application to biomolecular recognition of inorganic materials. Sequencing results showed that a motif consisting of serine and proline was commonly expressed in specific sequences. It was postulated that serine directly bound to nanoparticles using its terminal hydroxyl (OH) group. In this sense, oxygen atom seemed to work as a ligand to metal ions and hydrogen atom as a H-bond donor, was thought to bind to the oxygen atoms or the hydroxyl groups on particle surface. Also, it was expected that proline assists serine to make an ideal van der Waals contact between serine and nanoparticles, which optimizes the binding of peptide onto surface.

Aptamers (nucleic acid ligands) for trypsin-like serine proteases

  • Gal, Sang-Wan;Jeong, Yong-Kee;Satoshi Nishikawa
    • Journal of Life Science
    • /
    • 제12권1호
    • /
    • pp.14-18
    • /
    • 2002
  • Subpopulations of nucleotides that bind specifically to a variety of proteins have been isolated from a population of random sequence RNA/DNA molecules. Roughly one in $10^{13}$ random sequence RNA/DNA molecules folds in such a way as to create a specific binding site for small ligands. Since the development of in vitro selection procedure, more than 50 nucleic acid ligands (aptamers) have been isolated. These molecules are very useful for the study of molecular recognition between nucleic acid and protein/organic compound. In addition to these basic studies this method gives us a dream to produce new drugs against several diseases. We focused on several aptamers which specifically binds to trypsin-like serine proteases (thrombin, human neutrophil elastase, activated protein C and NS3 protease of human hepatitis C virus) and want to introduce their structural characteristics and some functions.

  • PDF

Regulation of Cyp 1A1 Gene Expression by Retinoic Acid Receptor, Retinoid X Receptor and Constitutive Androstane Receptor in Rainbow Trout Hepatoma Cells(Rth 149)

  • Kim, Ji-Sun;Yang, So-Yeun;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.136-136
    • /
    • 2003
  • Exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a variety of biological and toxicology effects, most of which are mediated by aryl hydrocarbon receptor (AhR). The ligand-bound AhR as a heterodimer with AhR nuclear translocator (ARNT) binds to its specific DNA recognition site, the dioxin-responsive element (DRE), and it results in increased transcription of CVP1A1 gene.(omitted)

  • PDF

Regulation of CYP 1A1 gene expression by retinoic acid receptor, retinoid X receptor and constitutive androstane receptor in rainbow trout hepatoma cells(RTH 149)

  • Kim, Ji-Sun;Yang, So-Yeun;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.119.2-119.2
    • /
    • 2003
  • Exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a variety of biological and toxicology effects, most of which are mediated by aryl hydrocarbon receptor (AhR). The ligand-bound AhR as a heterodimer with AhR nuclear translocator (ARNT) binds to its specific DNA recognition site, the dioxin-responsive element (DRE), and it results in increased transcription of CYP1A1 gene. Retinoic acid (RA) regulates the transcription of various genes for several essential functions through binding to two classes of nuclear receptors, the retinoic acid receptor (RAR) and retinoid X receptor (RXR). (omitted)

  • PDF

Surface plasmon resonance 바이오센서를 이용한 재조합 B형 간염 표면항원의 정량분석 (Quantitative Assay of Recombinant Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor)

  • 이은규;안상점;유창훈;류강;전준영;이현익;최성철;이영식
    • KSBB Journal
    • /
    • 제17권1호
    • /
    • pp.20-25
    • /
    • 2002
  • We performed a basic experiment for rapid, on-line, real-time measurement of HBsAg by using a surface plasmon resonance biosensor to quantify the recognition and interaction of biomolecules. We immobilized the anti-HBsAg polyclonal antibody to the dextran layer on a CM5 chip surface which was pre-activated by N-hydroxysuccinimide for amine coupling. The binding of the HBsAg to the immobilized antibody was measured by the mass increase detected by the change in the SPR signal. The binding characteristics between HBsAg and its antibody followed typical monolayer adsorption isotherm. When the entire immobilized antibody was interacted, there was no additional, non-specific binding observed, which suggested the biointeraction was very specific as expected and independent of the ligand density. No significant steric hindrance was observed at 17.6 nm/$mm^2$ immobilization density. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the chip surface was linear up to ca. $40\mu\textrm{g}$/mL, which is much wider than that of the ELISA method. It appeared the antigen-antibody binding was increased as the immobilized ligand density increased, but verification is warranted. This study showed the potential of this biosensor-based method as a rapid, simple, multi-sample, on-line assay. Once properly validated, it can serve as a more powerful method for HBsAg quantification replacing the current ELISA method.

A Pattern Recognition Receptor, SIGN-R1, Mediates ROS Generation against Polysaccharide Dextran, Resulting in Increase of Peroxiredoxin-1 and Its Interaction to SIGN-R1

  • Choi, Heong-Jwa;Choi, Woo-Sung;Park, Jin-Yeon;Kang, Kyeong-Hyeon;Prabagar, Miglena G.;Shin, Chan-Young;Kang, Young-Sun
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.271-279
    • /
    • 2010
  • Streptococcus pneumoniae is the major pathogen that frequently causes serious infections in children, the elderly and immunocompromised patients. S. pneumoniae is known to produce reactive oxygen species (ROS) and S. pneumoniae-produced ROS is considered to play a role in pneumococci pathogenesis. SIGN-R1 is the principal receptor of capsular polysaccharides (CPSs) of S. pneumoniae. However, there is a considerable lack of knowledge about the protective role of SIGN-R1 against S. pneumoniae-produced ROS in SIGN-$R1^+$ macrophages. While investigating the protective role of SIGN-R1 against ROS, we found that SIGN-R1 intimately bound to peroxiredoxin-1 (Prx-1), one of small antioxidant proteins in vitro and in vivo. This interaction was increased with ROS generation which was produced by stimulating SIGN-R1 with dextran, a polysaccharide ligand of SIGN-R1. Also, SIGN-R1 crosslinking with 22D1 anti-SIGN-R1 antibody increased Prx-1 in vitro or in vivo. These results suggested that SIGN-R1 stimulation with CPSs of S. pneumoniae increase the expression level of Prx-1 through ROS and its subsequent interaction to SIGN-R1, providing an important antioxidant role for the host protection against S. pneumoniae.

Crystal Structure of GRIP1 PDZ6-peptide complex reveals the structural basis for class II PDZ target recognition and PDZ domain-mediated multimerization

  • Im, Young-Jun;Park, Seong-Ho;Park, Seong-Hwan;Lee, Jun-Hyuck;Kang, Gil-Bu;Morgan Sheng;Kim, Eunjoon;Eom, Soo-Hyun
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.4-4
    • /
    • 2002
  • PDZ domains bind to short segments within target proteins in a sequence-specific fashion. GRIP/ABP family proteins contain six to seven PDZ domains and interact via its sixth PDZ domain (class Ⅱ) with the C-termini of various proteins, including liprin-α. In addition the PDZ456 domain mediates the formation of homo- and heteromultimers of GRIP proteins. To better understand the structural basis of peptide recognition by a class Ⅱ PDZ domain and DZ-mediated multimerization, we determined the crystal structures of the GRIPI PDZ6 domain, alone and in complex with a synthetic C-terminal octapeptide of human liprin-α, at resolutions of 1.5 Å and 1.8 Å, respectively. Remarkably, unlike other class Ⅱ PDZ domains, Ile736 at αB5 rather than conserved Leu732 at αB1 makes a direct hydrophobic contact with the side chain of the Tyr at the -2 position of the ligand. Moreover, the peptide-bound structure of PDZ6 shows a slight reorientation of helix αB, indicating that the second hydrophobic pocket undergoes a conformational adaptation to accommodate the bulkiness of the Tyr's side chain, and forms an antiparallel dimer through an interface located at a site distal to the peptide-binding groove. This configuration may enable formation of GRIP multimers and efficient clustering of GRIP-binding proteins.

  • PDF