• 제목/요약/키워드: lifting capacity

검색결과 54건 처리시간 0.03초

Analysis of a Long Volumetric Module Lift Using Single and Multiple Cranes

  • Khodabandelu, Ali;Park, JeeWoong;Choi, Jin Ouk;Sanei, Mahsa
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.563-570
    • /
    • 2022
  • Industrialized and modular construction is a growing construction technique that can transfer a large portion of the construction process to off-site fabrication yards. This method of construction often involves the fabrication, pre-assembly, and transportation of massive and long volumetric modules. The module weight keeps increasing as the modules become more complete (with infill) to minimize the work at the site and, as higher productivity can be achieved at the fabrication shop. Thus, a volumetric module delivery gets more challenging and risky. Despite its importance, past research paid relatively insufficient attention to the problem related to the lifting of heavy modules. This can be a complex and time-consuming problem with multiple lifting for transportation-and-installation operations both in fabrication yard and jobsite, and require complex crane operations (sometimes, more than one crane) due to crane load capacity and load balance/stability. This study investigates this problem by focusing on the structural perspective of lifting such long volumetric modules through simulation studies. Various scenarios of lifting a weighty module from the top using four lifting cables attached to crane hooks (either a single crane or double crane) are simulated in SAP software. The simulations account for various factors pertaining to structural indices, e.g., bending stress and deflection, to identify a proper method of module lifting from a structural point of view. The method can identify differences in structural indices allowing identification of structural efficiency and safety levels during lifting, which further allows the selection of the number of cranes and location of lifting points.

  • PDF

권상용량 증가에 따른 컨테이너 크레인의 내풍특성 비교 (A Comparison of the Wind Resistance Characteristic of a Container Crane According to the Increase to the Lifting Capacity)

  • 이성욱;김형훈;한동섭;한근조;김태형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.204-209
    • /
    • 2007
  • This study was carried out to analyze the effect of wind load on the structural stability of a container crane according to the increase of the lifting capacity using wind tunnel test and provided a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load at 75m/s wind velocity is applied on a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Eiffel type atmospheric boundary-layer wind tunnel with $11.52m^{2}$ cross-section area. Each directional drag and overturning moment coefficients were investigated.

  • PDF

인력물자취급시의 인체심리학적 최대허용중량의 생리학적 고찰 (Physiological Assessment of the Psychophysical Maximum Acceptable Weight of Load for Manual Materials Handling Tasks)

  • 정성학;김홍기
    • 대한인간공학회지
    • /
    • 제18권1호
    • /
    • pp.1-12
    • /
    • 1999
  • The objective of this study was to investigate the metabolic energy consumption rate of the psychophysical Maximum Acceptable Weight of Loads (MAWLs) for different manual materials handling tasks. Lifting activities with four different lifting frequencies (2, 5, 8, 11 lifts/min) for a lifting range (from floor to 76cm height) were studied. The oxygen consumption rate and heart rate were measured or recorded while subjects were lifting their MAWLs. It was found that the relationship between MAWL and frequency can be described best by the exponential function with the R-sq value 0.9865 for this study. Psychophysical MAWL decreased from 22.38 to 7.48 kg, while the oxygen consumption rate with the MAWL increased from 717.8 to $1114.7m{\ell}-O_2/min$ as the frequency increased from 2 to 11 lifts/min. Heart rate also increased from 104.5 to 120.7 bpm. The ratio of oxygen consumption for the MAWL to the Physical Work Capacity (PWC) ranged from 28 to 43%. The MAWLs were greater than or equal to the Maximum Permissible Limits (MPLs) when the frequencies were higher than 8 lifts/min. It seems that the MAWLs by psychophysical approach when the frequencies were higher than 8 lifts/min tend to be overestimated from the viewpoint of the physiological criterion of the oxygen consumption rates. From these findings it is suggested that the NIOSH Guideline should not be directly applied to Korean without reasonable modifications.

  • PDF

초고층 건축물 리프트카 양중계획수립을 위한 자원기반의 양중부하 산정 모형 (A computation model for Resource-based Lifting loads of the lift-cars for super high-rise buildings)

  • 한충희;이준복;원서경
    • 한국건설관리학회논문집
    • /
    • 제13권5호
    • /
    • pp.135-143
    • /
    • 2012
  • 초고층 건축물은 일반적 건축물에 비해, 구조, 환경적 분야 뿐 아니라 시공 분야에서도 골조공사와 마감공사의 시공방법, 재료, 공사관리 등에서 차이점이 있다. 특히 초고층 건축물 시공에서 요구되는 다양한 관리기법 중 양중계획 및 관리는 핵심적인 분야이며, 건설공사에 필요한 인원 및 자재와 같은 자원을 리프트카와 같은 양중기계장비를 이용하여 효율적으로 수직이동하여야 한다. 그러나 리프트카의 경우 초기 수립된 계획과 실제 운영에 차이가 발생하는 경우가 많고 이러한 비효율성으로 인해 문제가 발생하는 경우가 많다. 본 연구에서는 양중작업에 사용되는 리프트카를 대상으로 건축마감공사의 자원물량에 근거한 양중부하 산정 방법 및 예측 모델을 제시하고자 한다. 그 결과 리프트카 운행시간 및 사이클타임을 계산하여 총 양중장비 가동시간 및 양중가능 물량을 산출할 수 있을 것이다. 이를 양중장비조합을 위한 의사결정 지원 모델 구축을 위한 연구로 발전시켜 나갈 것이다.

Development of a hydraulic power transmission system for the 3-point hitch of 50-kW narrow tractors

  • Chung, Sun-Ok;Kim, Yong-Joo;Choi, Moon-Chan;Lee, Kyu-Ho;Ha, Jong-Kyou;Kang, Tae-Kyoung;Kim, Young-Keun
    • 농업과학연구
    • /
    • 제43권3호
    • /
    • pp.450-458
    • /
    • 2016
  • High performance small and mid-sized tractors are required for dryland and orchard operations. A power transmission system is the most important issue for the design of high performance tractors. Many operations, such as loading and lifting, use hydraulic power. In the present study, a hydraulic power transmission system for the 3-point hitch of a 50 kW narrow tractor was developed and its performance was evaluated. First, major components were designed based on target design parameters. Target operations were spraying, weeding, and transportation. Main design parameters were determined through mathematical calculation and computer simulation. The capacity of the hydraulic cylinder was calculated taking the lifting force required for the weight of the implements into consideration. Then, a prototype was fabricated. Major components were the lifting valve, hydraulic cylinder, and 3-point hitch. Finally, performance was evaluated through laboratory tests. Tests were conducted using load weights, lift arm sensor, and lift arm height from the ground. Test results showed that the lifting force was in the range of 23.5 - 29.4 kN. This force was greater than lifting forces of competing foreign tractors by 3.9 - 4.9 kN. These results satisfied the design target value of 20.6 kN, determined by survey of advanced foreign products. The prototype will be commercialized after revision based on various field tests. Improvement of reliability should be also achieved.

A Study on Asymmetric Lifting Capacity Due to Spine Deformity

  • Oh, Hyunsoo;Chang, Seong Rok
    • International Journal of Safety
    • /
    • 제11권1호
    • /
    • pp.22-25
    • /
    • 2012
  • Scoliosis can be biomechanically described as a three dimensional deformity of the spine, with deviations from the physiologic curves in the sagittal and frontal planes, usually combined with intervertebral rotation. Various factors are suspected such as genetic defects, uneven growth of the vertebrae, hormonal effects, abnormal muscular activity, postural problems, or a mix of some of these elements, but its initial cause is known in only 15-20% cases. The screening test for diagnosing scoliosis is called the Adams Forward Bend Test. During the experiment, the subjects were asked to bend over, with arms dangling, until a curve could be observed. The Scoliometer was placed on the back of the subjects and used to measure the difference between the left and right apex of the curve in the thoracic, thoracolumbar and lumbar area. Then, the subjects were asked to perform Maximum Voluntary Contractions (MVCs) using the digital back muscle dynamometer in three different postures: (1) 0o (sagittally symmetric); (2) 30o from the mid-sagittal plane (clockwise); and (3) 30o from the mid-sagittal plane (counterclockwise). In addition to the experimental data, subject-dependent variables including Body Mass Index (BMI), percentage of body fat and muscle mass of left/right arms and legs were employed to reveal the cause of difference among three MVC conditions. All those variables were tested using statistical methods.

도면인식을 이용한 타워크레인 위치선정 자동화 알고리즘 개발 기초연구 (A Basic Study for Development of Automatic Arrangement Algorithm of Tower Crane using drawing recognition)

  • 임채연;이동훈;한경보;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.64-65
    • /
    • 2015
  • As construction projects have increased in size and height recently, lifting accounts for increasingly greater portion and tower cranes are used more frequently. At present, the selection and arrangement of tower crane are depend on the experience of experts. However, since the number of experts is fairly limited and a database for tower cranes regarding lifting capacity, operation properties, rent, etc has not been widely employed, tower cranes are often not effectively selected and arranged which can cause cost overruns and delays in the lifting work. To address such issues, this study attempts to perform a basic study for development of automatic arrangement algorithm of tower crane using drawing recognition. If relevant database is established and the algorithm suggested in this study is refined more systematically, even beginning level engineers will be able to plan tower crane arrangement in a way comparable to experienced experts.

  • PDF

T형 리프팅 러그의 최종강도 평가와 설계 (Ultimate Strength Assessment and Design of T type Lifting Lug)

  • 이주성;김민술
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.444-451
    • /
    • 2015
  • Lifting lugs are frequently used in shipyard to transport and turn over blocks of ship and offshore structures. As the shipbuilding technology develops, blocks has become bigger and bigger, and block management technology takes a more important role in shipbuilding to enhance the productivity. For the sake of economic as well as safe design of lug structure, more rational design procedure based on the rigorous structural analysis is needed. This study is concerned with the optimum design of T type lug which is frequently used in shipyard. The optimum thickness of lug's main body is to be determined based on the results of non-linear strength analysis. As far as the present results for the present T type lugs having different capacity are concerned, it seems to be necessary to review the current design procedure of lug structure. The present design procedure can be extensively used in design of various types of lug structures used in shipyard.

작업자세에 따른 어깨근육의 작업부하 측정 (Measurement of Shoulder Muscle Workload at Various Working Postures)

  • 김정룡;박지수;박창순;편흥국
    • 대한산업공학회지
    • /
    • 제25권2호
    • /
    • pp.266-273
    • /
    • 1999
  • The maximum work capacity at various shoulder angles was estimated in terms of joint moment through maximum voluntary contraction (MVC) measurement, and the result was compared to workload computed from 3-D static lifting model (3DSSPP) based upon national institute of safety and health (NIOSH) lifting guideline (1991). The electromyography (EMG) of anterior/posterior deltoid and trapezius muscle was also recorded to study the function of individual muscle during asymmetric shoulder lifting. Psychophysical workload was measured to observe the difference from MVC or biomechanical estimation. An apparatus was constructed for the study and twenty five trials including five flexion angles and five add/abduction angles were performed isometrically. Results indicated that MVC at 30 degree of flexion was the strongest whereas MVC at 120 degree was the weakest. In case of add/abduction, MVC decreased to 77 to 89 % during add/abduction compared to the MVC at neutral position. Regarding the normalized EMG value, a substantial increase was observed at 30 and 60 degree abduction. More importantly, the shoulder moment computed from maximum permissible limit (MPL) was greater than the moment at MVC condition during 30 degree adduction. Current result can be used as a reference information for a safe workplace design to prevent the shoulder from an excessive work load in industry.

  • PDF