• 제목/요약/키워드: lifting acceleration

검색결과 15건 처리시간 0.017초

규칙적 들어올리기 작업에 있어서의 들기 가속도와 피로도와의 관계연구 (Fatigue Effect on Lifting Acceleration During Frequent Liftings)

  • Kim, Young-Joun
    • 대한인간공학회지
    • /
    • 제21권1호
    • /
    • pp.27-32
    • /
    • 2002
  • The objective of this study was to investigate the effects of fatigue, caused by frequent manual lifting. on lifting velocity and lifting acceleration. Ten male volunteers performed lifting at a rate of 4 times per minute, continuously, for two hours using the free-style posture A box($30cm{\times}30cm{\times}20$) with a fixed weight (15.9 Kg) was used as the load for lifting, Heart rate, oxygen consumption, and EMG were also measured to estimate the level of fatigue, The posture as well as acceleration was recorded. The results showed that the lifting acceleration at the end of two hour increased significantly (20%, p<0.001) compared to the acceleration after fifteen minutes of lifting. It was also found that subjects changed their lifting postures as the result of fatigue. All subjects also indicated pain in their upper legs and the lower back at the conclusion of the experiment.

Fatigue effects on manual lifting acceleration

  • Kim, Y.J.;Lee, K.S.
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1992년도 추계학술대회논문집
    • /
    • pp.18-21
    • /
    • 1992
  • The objective of this study was to investigate the effects of fatigue, caused by frequent manual lifting, on lifting velocity and lifting acceleration. Ten male volunteers performed lifting at a rate of 4 times per minute, continuously, for two hours using the free-style posture. A box $(30cm{\times}30cm{\times}20cm)$ with a fixed weight (15.9kg) was used as the load for lifting. Heart rate, oxygen consumption, and EMG were also measured to estimate the level of fatigue. The posture as well as acceleration was recorded. The results show that the lifting acceleration at the end of two hour increased significantly (20%, p<0.001) compared to the accleration after fifteen minutes of lifting. It was also found that subjects changed their lifting postures as the result of fatigue. All subjects also indicated pain in their upper legs and the lower back at the conclusion of the experiment.

  • PDF

역도경기의 자세, 무게중심, 가속도가 발휘근력에 미치는 영향에 관한 생체역학적 연구 (A Biomechanical Study on Kinetic Posture, Center-of-Gravity, Acceleration and their Effects on the Maximum Capability of Weight-lifting)

  • 이면우;정경호;한성호;이긍세;이춘식
    • 대한산업공학회지
    • /
    • 제11권2호
    • /
    • pp.87-99
    • /
    • 1985
  • The purpose of this study is to analyze the changes in centers-of-gravity (COG), acceleration and body posture and their associated effects both on EMG and on the maximum capability of weight lifting during Clean & Jerk and Snatch motions. Displacement, velocity, acceleration of joints were obtained from film analysis. Also levels of exertions on 11 major muscle groups were obtained from EMG analysis during a lifting cycle. The EMG data were measured from Telemetry System which is useful in field experiments. Magnitude and direction of force, change in center-of-gravity were extracted from COG data which were measured from force platform. The results of this study can be to be useful both to coaches and to athletes in weight-lifting.

  • PDF

한 손 들기 작업과 양 손 들기 작업의 근력 능력 비교 연구 (Comparison of Muscle Strength for One-hand and Two-hands Lifting Activity)

  • 김홍기
    • 대한인간공학회지
    • /
    • 제26권2호
    • /
    • pp.35-44
    • /
    • 2007
  • Work-related musculoskeletal disorders (WMSDs) are a major problem in industries in which manual materials handling is performed by workers. To prevent these WMSDs, it is necessary to understand the muscular strength capability and use this knowledge to design job and selection and assignment of workers. Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. However, a few researches have been done for one-hand lifting activity of manual materials handling tasks. The objective of this study is to compare one-hand and two-hands lifting strength in terms of static and dynamic strength of the lifting activity for the ranging from the height of knuckle to elbow. It is shown in this study that the isometric lifting strength of one-hand is ranging from 54.7 to 63.3% of the one of two-hands. However, it is found that there is no significant difference between a person's isometric lifting strength for left-hand and right-hand. It is also shown that there is no significant difference between the peak force under the dynamic sub-maximal loading with one-hand and two-hands lifting activity. Similar results were obtained for the peak acceleration and peak velocity under the dynamic sub-maximal loading with one-hand and two-hands lifting activity. Isometric lifting strength at the height of knuckle was ranging from 2 to 3 times of the dynamic peak force during sub-maximal lifting. It is concluded that the dynamic peak forces under the sub-maximal loading are not highly correlated with the isometric lifting strength in similar postures.

Development of a System Observing Worker's Physiological Responses and 3-Dimensional Biomechanical Loads in the Task of Twisting While Lifting

  • Son, Hyun Mok;Seonwoo, Hoon;Kim, Jangho;Lim, KiTaek;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • 제38권2호
    • /
    • pp.163-170
    • /
    • 2013
  • Purpose: The purpose of this study is to provide analysis of physiological, biomechanical responses occurring from the operation to lifting or twist lifting task appears frequently in agricultural work. Methods: This study investigated the changes of physiological factors such as heart rate, heart rate variability (HRV) and biomechanical factors such as physical activity and kinetic analysis in the task of twisting at the waist while lifting. Results: Heart rates changed significantly with the workload. The result indicated that the workload of 2 kg was light intensity work, and the workload of 12 kg was hard intensity work. Physical activity increased as the workload increased both on wrist and waist. Besides, stress index of the worker increased with the workload. Dynamic load to herniated discs was analyzed using inertial sensor, and the angular acceleration and torque increased with the workload. The proposed measurement system can measure the recipient's physiological and physical signals in real-time and analyzed 3-dimensionally according to the variety of work load. Conclusions: The system we propose will be a new method to measure agricultural workers' multi-dimensional signals and analyze various farming tasks.

교량상 slab궤도의 상향력 민감도분석 (Parameteric Analysis for Up-lifting force on Slab track of Bridge)

  • 최성기;박대근;한상윤;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

반복적인 들어올리기 작업시 작업자의 생체정보, 인체활동량 및 허리부하 분석 (Analysis of Physiological Bio-information, Human Physical Activities and Load of Lumbar Spine during the Repeated Lifting Work)

  • 손현목;선우훈;임기택;김장호;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제35권5호
    • /
    • pp.357-365
    • /
    • 2010
  • Workers in the agricultural industry have been exposed to many work-related musculoskeletal disorders. So, our objectives in this study were to measure and analyze worker's physiological bio-information to reduce musculoskeletal disorders in relation to agricultural works. We investigated worker's bio-information of physiological signals during the repeated lifting work such as body temperature, heart rate, blood pressure, physical activity, and heart rate variability. Moreover, we analyzed the workloads of lumbar spine during the repeated lifting work using the 3-axis acceleration and angular velocity sensors. The changes of body temperature was not significant, but the mean heart rate increased from 90/min to 116/min significantly during 30 min of repeated lifting work (p<0.05). The average worker's physical activity(energy consumption rate) was 206 kcal/70kg/h during the repeated lifting work. The workers' acute stress index was more than 80, which indicated a stressful work. Also, the maximum shear force on the disk (L5/S1) of a worker's lumbar spine in static state was 500N, and the maximum inertia moment was 139 $N{\cdot}m$ in dynamic state.

Seismic response of structures with a rocking seismic isolation system at their base under narrow-band earthquake loading

  • Miguel A. Jaimes;Salatiel Trejo;Valentin Juarez;Adrian D. Garcia-Soto
    • Earthquakes and Structures
    • /
    • 제25권4호
    • /
    • pp.269-282
    • /
    • 2023
  • This study investigates a rocking seismic isolation (RSI) system as a seismic protection measure against narrow-band ground-motions generated by earthquakes. Structures supported over RSIs are considered capable of reducing the lateral demands and damage of the main structural system through lifting and rocking. This lifting and rocking during earthquake activity is provided by free-standing columns. A single-degree-of-freedom (SDOF) system supported on a RSI system is subjected to narrow-band seismic motions and its response is compared to an analog system without RSI. The comparison is then extended to reinforced concrete linear frames with and without RSI; three-bay frames with 11 and 17 storeys are considered. It is found that the RSI systems significantly reduce acceleration and displacement demands in the main structural frames, more noticeably if the first structural mode dominates the response and for ratios of the predominant frequency of the ground motion to the predominant frequency of the main frame near one. It is also found that the RSI system is more effective in reducing lateral accelerations and displacements of the main structure when the aspect ratio, b/h, and size, R, of the free-standing columns decrease, although the rocking stability of the RSI system is also reduced.

Advance Crane Lifting Safety through Real-time Crane Motion Monitoring and Visualization

  • Fang, Yihai;Cho, Yong K.
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.321-323
    • /
    • 2015
  • Monitoring crane motion in real time is the first step to identifying and mitigating crane-related hazards on construction sites. However, no accurate and reliable crane motion capturing technique is available to serve this purpose. The objective of this research is to explore a method for real-time crane motion capturing and investigate an approach for assisting hazard detection. To achieve this goal, this research employed various techniques including: 1) a sensor-based method that accurately, reliably, and comprehensively captures crane motions in real-time; 2) computationally efficient algorithms for fusing and processing sensing data (e.g., distance, angle, acceleration) from different types of sensors; 3) an approach that integrates crane motion data with known as-is environment data to detect hazards associated with lifting tasks; and 4) a strategy that effectively presents crane operator with crane motion information and warn them with potential hazards. A prototype system was developed and tested on a real crane in a field environment. The results show that the system is able to continuously and accurately monitor crane motion in real-time.

  • PDF

건설 리프트 가감속 능력을 고려한 양중시간 산정 알고리즘 개발 (An Algorithm for Hoisting Time Calculation in Super-tall Building Construction)

  • 조창연;신윤석;원서경;김정렬;조문영
    • 한국건설관리학회논문집
    • /
    • 제12권6호
    • /
    • pp.120-129
    • /
    • 2011
  • 초고층 건축공사에 있어서의 건설리프트 설치는 여러 가지 제한조건들에 의해 한정적인 대수만이 설치될 수 있으며, 이러한 건설리프트의 특징에서 기인하는 설치의 제약은 수직동선 관리에 의해 변화하는 각 층별 노무 생산성에 밀접한 영향을 미치게 된다. 따라서 초고층 건축공사에 있어서의 리프트 운영관리는 현장의 작업생산성을 결정하는 중요한 관리요소이나, 현재 초고층 건축공사의 건설리프트 운영계획의 경우, 각 건설사별 다른 기준을 바탕으로 해당사의 숙련 기술자들의 경험에 의존하는 형태로 계획 및 관리가 이루어지고 있으며, 이러한 관리형태는 프로젝트가 초고층화 및 대형화됨에 따라 고려하지 못하거나 착오가 발생할 수 있는 부분이 생길 수 있는 리스크를 가지고 있다. 이에 본 연구에서는 초고층 건축공사의 중요한 관리요소인 건설리프트 양중관리 시뮬레이션 개발의 일환으로, 건설 리프트의 가감속 능력을 고려한 양중계획 시간산정 알고리즘을 개발하고, 개발된 알고리즘에 대해 시뮬레이션 및 현장측정을 통해 검증하였다.