DOI QR코드

DOI QR Code

Seismic response of structures with a rocking seismic isolation system at their base under narrow-band earthquake loading

  • Miguel A. Jaimes (Instituto de Ingenieria, UNAM) ;
  • Salatiel Trejo (Facultad de Ingenieria, UNAM) ;
  • Valentin Juarez (Facultad de Ingenieria, UNAM) ;
  • Adrian D. Garcia-Soto (Departamento de Ingeniería Civil, Universidad de Guanajuato)
  • Received : 2022.09.27
  • Accepted : 2023.09.25
  • Published : 2023.10.25

Abstract

This study investigates a rocking seismic isolation (RSI) system as a seismic protection measure against narrow-band ground-motions generated by earthquakes. Structures supported over RSIs are considered capable of reducing the lateral demands and damage of the main structural system through lifting and rocking. This lifting and rocking during earthquake activity is provided by free-standing columns. A single-degree-of-freedom (SDOF) system supported on a RSI system is subjected to narrow-band seismic motions and its response is compared to an analog system without RSI. The comparison is then extended to reinforced concrete linear frames with and without RSI; three-bay frames with 11 and 17 storeys are considered. It is found that the RSI systems significantly reduce acceleration and displacement demands in the main structural frames, more noticeably if the first structural mode dominates the response and for ratios of the predominant frequency of the ground motion to the predominant frequency of the main frame near one. It is also found that the RSI system is more effective in reducing lateral accelerations and displacements of the main structure when the aspect ratio, b/h, and size, R, of the free-standing columns decrease, although the rocking stability of the RSI system is also reduced.

Keywords

Acknowledgement

This research was financially supported by the Project IG100623-PAPIIT-UNAM. Additional support was sponsored by Instituto de Ingenieria at UNAM through the Research Fund R528. We also thank two anonymous reviewers whose comments and suggestions help us to importantly improve this article.

References

  1. Arroyo, D., Ordaz, M., Ovando-Shelley, E., Guasch, J.C., Lermo, J., Perez, C., ... and Ramirez-Centeno, M.S. (2013), "Evaluation of the change in dominant periods in the lake-bed zone of Mexico City produced by ground subsidence through the use of site amplification factors", Soil Dyn. Earthq. Eng., 44, 54-66. https://doi.org/10.1016/j.soildyn.2012.08.009.
  2. Aslam, M., Godden, W. and Scalise, T. (1980), "Earthquake rocking response of rigid bodies", J. Struct. Div. ASCE, 106, 377-392. https://doi.org/10.1061/JSDEAG.0005363.
  3. Bachmann, J.A., Jost, C., Studemann, Q., Vassiliou, M.F. and Stojadinovic, B. (2016), "An analytical model for the dynamic response of an elastic SDOF system fixed on top of a rocking single-storey frame structure: Experimental validation", Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, June.
  4. Bachmann, J.A., Vassiliou, M.F. and Stojadinovic, B. (2017), "Dynamics of rocking podium structures", Earthq. Eng. Struct. Dyn., 46(14), 2499-2517. https://doi.org/10.1002/eqe.2915.
  5. Bantilas, K.E., Kavvadias, I.E. and Vasiliadis, L.K. (2021a), "Analytical investigation of the seismic response of elastic oscillators placed on the top of rocking storey", Bull. Earthq. Eng., 19(2), 1249-1270. https://doi.org/10.1007/s10518-020-01019-3.
  6. Bantilas, K.E., Kavvadias, I.E., Vasiliadis, L.K. and Elenas, A. (2021b), "Seismic fragility and intensity measure investigation for rocking podium structures under synthetic pulse-like excitations", Earthq. Eng. Struct. Dyn., 50(13), 3441-3459. https://doi.org/10.1002/eqe.3517.
  7. Bibi, T., Ali, A., Naeem, A., Zhang, C. and Ahmad, N. (2023), "To investigate different parameters of economic sliding based seismic isolation system", J. Earthq. Eng., 2023, 1-30. https://doi.org/10.1080/13632469.2023.2217935.
  8. Butcher, J.C. (2016), Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Hoboken, NJ, USA.
  9. Calugaru, V. (2013), "Earthquake resilient tall reinforced concrete buildings at near-fault sites using base isolation and rocking core walls", Ph.D. Dissertation, University of California, Berkeley, CA, USA.
  10. Cherepinskiy, Y. (2004), "Seismic isolation of buildings with application of the kinematics bases", 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
  11. Eisenberg, J.M. and Smirnov, V.I. (2012), "Building seismic isolation in Russia without rubber and with rubber", ISET Golden Jubilee Symposium, Rookee, India, October.
  12. Feng, R., Cheng, Y. and Cui, G. (2018), "Dynamic response of post-tensioned rocking wall-moment frames under near-fault ground excitation", Earthq. Struct., 15(3), 243-251. https://doi.org/10.12989/eas.2018.15.3.243.
  13. Housner, G.W. (1963), "The behavior of inverted pendulum structures during earthquakes", Bull. Seismol. Soc. Am., 53(2), 403-417. https://doi.org/10.1785/BSSA0530020403.
  14. Ishiyama, Y. (1982), "Motions of rigid bodies and criteria for overturning by earthquake excitations", Earthq. Eng. Struct. Dyn., 10(5), 635-650. https://doi.org/10.1002/eqe.4290100502.
  15. Kavvadias, I.E., Bantilas, K.E., Vasiliadis, L. and Elenas, A. (2021), "The effect of impact modeling on the seismic response of multi-storey podium structures", 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, June.
  16. Kikuchi, T., Takeuchi, T., Fujimori, S. and Wada, A. (2014), "Design of seismic isolated tall building with high aspect-ratio", Int. J. High-Rise Build., 3(1), 1-8. https://doi.org/10.21022/IJHRB.2014.3.1.001
  17. Ko, K.W. and Ha, J.G. (2021), "Ground motion intensity measure to evaluate seismic performance of rocking foundation system", Earthq. Struct., 21(6), 563-576. https://doi.org/10.12989/eas.2021.21.6.563.
  18. Koh, A.S., Spanos, P.D. and Roesset, J.M. (1986), "Harmonic rocking of rigid block on flexible foundation", J. Eng. Mech., 112(11), 1165-1180. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1165).
  19. Milne, J. (1885), "Seismic experiments", Transac. Seismol. Soc. Japan, 8, 1-82.
  20. Makris, N. and Roussos, Y. (1998), "Rocking response and overturning of equipment under horizontal pulse-type motions", Report PEER-1998/05, College of Engineering, University of California, LA, CA, USA.
  21. Makris, N. (2014a), "A half-century of rocking isolation", Earthq. Struct., 7(6), 1187-1221. https://doi.org/10.12989/eas.2014.7.6.1187.
  22. Makris, N. (2014b), "The role of the rotational inertia on the seismic resistance of free-standing rocking columns and articulated frames", Bull. Seismol. Soc. Am., 104(5), 2226-2239. https://doi.org/10.1785/0120130064.
  23. Moeindarbari, H. and Taghikhany, T. (2018), "Seismic reliability assessment of base-isolated structures using artificial neural network: Operation failure of sensitive equipment", Earthq. Struct., 14(5), 425-436. https://doi.org/10.12989/eas.2018.14.5.425.
  24. Nie, W., Liu, S., Lu, S., Liu, S., Bai, C. and Yin, H. (2021), "Seismic performance analysis of rocking wall TMDs structure based on shaking table", Earthq. Struct., 21(1), 23-36. https://doi.org/10.12989/eas.2021.21.1.023.
  25. Psycharis, I.N. and Jennings, P.C. (1983), "Rocking of slender rigid bodies allowed to uplift", Earthq. Eng. Struct. Dyn., 11(1), 57-76. https://doi.org/10.1002/eqe.4290110106.
  26. Shenton, H.W. (1996), "Criteria for initiation of slide, rock, and slide-rock rigid-body modes", J. Eng. Mech., 122(7), 690-693. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(690).
  27. Smirnov, V., Eisenberg, J. and Vasileva, A. (2004), "Seismic isolation of buildings and historical monuments. Recent developments in Russia", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
  28. Teran-Gilmore, A. and Jirsa, J.O. (2007), "Energy demands for seismic design against low-cycle fatigue", Earthq. Eng. Struct. Dyn., 36(3), 383-404. https://doi.org/10.1002/eqe.663.
  29. Teran-Gilmore, A., Sanchez-Badillo, A. and Espinosa-Johnson, M. (2010), "Performance-based seismic design of reinforced concrete ductile buildings subjected to large energy demands", Earthq. Struct., 1(1), 69-91. https://doi.org/10.12989/eas.2010.1.1.069.
  30. Uzdin, A.M., Doronin, F.A., Davydova, G.V., Avidon, G.E. and Karlina, E.A. (2009), "Performance analysis of seismic-insulating kinematic foundations on support elements with negative stiffness", Soil Mech. Found. Eng., 46(3), 99-107. https://doi.org/10.1007/s11204-009-9052-1.
  31. Vassiliou, M.F., Mackie, K.R. and Stojadinovic, B. (2014), "Dynamic response analysis of solitary flexible rocking bodies: Modeling and behavior under pulse-like ground excitation", Earthq. Eng. Struct. Dyn., 43(10), 1463-1481. https://doi.org/10.1002/eqe.2406.
  32. Vassiliou, M.F., Mackie, K.R. and Stojadinovic, B. (2017), "A finite element model for seismic response analysis of deformable rocking frames", Earthq. Eng. Struct. Dyn., 46(3), 447-466. https://doi.org/10.1002/eqe.2799.
  33. Vassiliou, M.F., Cengiz, C., Dietz, M., Dihoru, L., Broccardo, M., Mylonakis, G., ... and Stojadinovic, B. (2021a), "Dataset from the shake table tests of a rocking podium structure", Earthq. Spectra, 37(3), 2107-2125. https://doi.org/10.1177/8755293020988017.
  34. Vassiliou, M.F., Broccardo, M., Cengiz, C., Dietz, M., Dihoru, L., Gunay, S., ... and Stojadinovic, B. (2021b), "Shake table testing of a rocking podium: Results of a blind prediction contest", Earthq. Eng. Struct. Dyn., 50(4), 1043-1062. https://doi.org/10.1002/eqe.3386.
  35. Wei, B., Fu, Y., Jiang, L. and Li, S. (2022), "Numerical calculation method for response of friction pendulum system when XY shear keys are sheared asynchronously", Struct. Eng. Mech., 81(5), 591-606. https://doi.org/10.12989/sem.2022.81.5.591.
  36. Wei, B., Wan, K., Wang, W., Hu, Z., Jiang, L. and Li, S. (2023), "Seismic isolation effect of a new type of friction pendulum bearing in high-speed railway girder bridge", Struct. 51, 776-790. https://doi.org/10.1016/j.istruc.2023.03.077.
  37. Yim, C.S., Chopra, A. and Penzien, J. (1980), "Rocking response of rigid blocks to earthquakes", Earthq. Eng. Struct. Dyn., 8, 565-587. https://doi.org/10.1002/eqe.4290080606.
  38. Zhang, J. and Makris, N. (2001), "Rocking response of free-standing blocks under cycloidal pulses", J. Eng. Mech., 127(5), 473-483. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(473).
  39. Zhang, C. and Ali, A. (2021), "The advancement of seismic isolation and energy dissipation mechanisms based on friction", Soil Dyn. Earthq. Eng., 146, 106746. https://doi.org/10.1016/j.soildyn.2021.106746.
  40. Zhang, C., Ali, A. and Sun, L. (2021), "Investigation on low-cost friction-based isolation systems for masonry building structures: Experimental and numerical studies", Eng. Struct., 243, 112645. https://doi.org/10.1016/j.engstruct.2021.112645.