• Title/Summary/Keyword: life-cycle cost(LCC)

Search Result 317, Processing Time 0.028 seconds

A Study on Economic Analysis and Performance Appraisal of Compact Type Variable Air Volume (컴팩트형 VAV 공조기의 성능평가와 경제성 분석에 관한 연구)

  • Kim, Dong-Cheol;Chung, Kwang-Seop;Kim, Young Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • Ceiling cooling and heating system that consider load arrangement and space in the ceiling needs to be developed. Therefore, experimental and economic changes were done to verify the performance of compact type VAV. The test results were as follow. 1) Noise test result, measuring approximately 50.4 dB~56.6 dB (before ceiling in landfill), had a better ceiling deadline than the current measure, about a 10 dB noise reduction, so that the office baseline (40~50 dB) noise was judged to be less than test. 2) For the static pressure test result, taking out an outside hydrostatic 25 mmAq, 24.8 mmAq was measured, respectively, at the point. 3) For the life-cycle cost analysis result, the initial investment cost, maintenance replacement costs, and maintenance costs increased 0.2%, but the energy savings ratio was 19.5% while the whole life cycle savings of 40 years LCC was reduced 11.9%.

A Study on Life Cycle Cost Analysis of Thermal Bridge Barrier Between Window Frame and Concrete Wall (건축물의 창틀과 벽체 사이 열교방지공법의 LCC 분석)

  • Park, Cheol-Yong;Kim, Woong-Hoi;Lee, Sang-Hee;Nam, Seung-Young;Yoon, Gil-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.59-60
    • /
    • 2019
  • Thermal bridge on a building envelope causes additional heat loss which increases the heating energy consumption. As the higher building insulation performance is required, heat loss through thermal bridge becomes higher proportion among total building heating energy consumption. For the exterior insulation and finish system, thermal bridge between window frame and concrete wall should be constidered as one of main reasons of heat loss. In this study, the thermal bridge barrier between window frame and concrete wall(STAR) was proposed as the best practice for reducing thermal bridge. The STAR was confirmed that the use of thermal bridge barrier imporved the annual heat energy capacity by 35% or more and the innitial construction cost by 7.4% or less because of additional interior insulation against condensation. Finally the life cycle cost during 20 year by heating energy of a building reduced by 25% or more compared with the exist technology. This STAR thermal bridge barrier will be used as the main technology to improve the energy efficiency of building.

  • PDF

A Study on the Life Cycle Cost Evaluation of the Conventional Auxiliary Power Unit for 8200 Series Electric Locomotive (8200호대 전기기관차용 기존품 보조전원장치의 수명주기비용 평가에 관한 연구)

  • Lee, Kye-Seung;Kim, Wan-il;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.331-336
    • /
    • 2018
  • In this paper, the life cycle cost of the auxiliary power unit in the conventional 8200 series electric locomotive is evaluated and an effective life cycle cost reduction method is sought. For this, a life cycle cost evaluation model was proposed using IEC 60300-3-3 standard. As a result of analysis, material cost which accounted for a large percentage of preventive maintenance cost, accounted for 64% of total cost, and breakdown maintenance cost was as high as 27%. Except for the cost of preventive maintenance, the breakdown maintenance cost ratio was the highest. In order to reduce the LCC of the auxiliary power unit(APU) of the 8200 series in the future, it is necessary to reduce the material cost in case of development and to secure the high reliability according to the parts manufacturing so as to minimize the maintenance cost.

A Study on Proper Maintenance Level Selection of Track Ballast Structures Using LCC Analysis (LCC분석을 통한 궤도도상구조의 적정 유지관리수준 선정에 관한 연구)

  • An, Kook;Lee, Ho-Yeol;Chu, Jang-Sik;Park, Mi-Yun;Lim, Jong-Kwon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.232-237
    • /
    • 2008
  • Several research institutes including KISTEC and KRRI etc., recently, have studied maintenance activities and performance, in order to determine proper maintenance level and maintenance cost of rail tracks. But it may extremely difficult to make a decision in maintenance matters of concrete track and ballast containing other sub-components. For these reasons, this study investigate variables related to current maintenance, essential maintenance, and preventive maintenance. It is intended to suggest estimation method of proper maintenance cost maximizing rail track performance. It is stated that proposed approach may be very useful to make a decision of proper maintenance level. Typical section of rail track is applied for calculation of life cycle cost according to each maintenance strategy. A proper profile for maintenance is determined minimum life cycle

  • PDF

Analysis of the Life Cycle Cost for the Ballasted Track and the Concrete Track Structures (자갈도상과 콘크리트도상 궤도구조의 생애주기비용 분석)

  • Baek, Jae-Wook;Song, Yoo-Seob;Park, Tae-Hyo
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1299-1305
    • /
    • 2006
  • In this paper, the objective is an evaluation of economics using Life Cycle Cost(LCC) analysis for the ballasted track and the concrete track. However, since the absence of reliable data on maintenance activities, the degree of a reliability about the results of the LCC analysis is insufficient yet. In order to remedy the problems, we surveyed a professional research group for an approximate estimation which can be represented a degree of maintenance through a application of examples. Hereby we found that it is possible to expect the retrenchment of cost using preventive maintenance management. Moreover we proposed appropriate and economical restrictions between track structures.

  • PDF

A Sludge Collector Selection Model by Life Cycle Cost Analysis (LCC분석에 의한 슬러지수집기 선정 모델)

  • Lee, Seung-Hoon;Woo, Yu-Mi;Lee, Sung-Rak;Koo, Kyo-Jin;Hyun, Chang-Taek;Hong, Tae-Hoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.6
    • /
    • pp.175-184
    • /
    • 2006
  • This study focused on developing Life Cycle Cost(LCC) analysis model for selecting sludge collectors in wastewater treatment system and applying the model to a case study. Cost items are examined through literature review and historical data of a facility. Analysis period, discount rate, energy cost escalation ratio are assumed to reasonable level. Monetary evaluation is performed using historical data and estimations from vendors. Sensitive analysis is executed using Monte Carlo Simulation for assumed factors. Interviews with operators, vendors, constructors, managers are conducted to define factors which indicates ease of maintenance, ease of delivery, technical performance, efficiency, environmental friendship. Factors are representing technical and social factors. Results from LCC analysis and qualitative analysis are evaluate together with Weighted Matrix Evaluation Methods for optimum alternative of sludge collectors.

A Study for Analyzing Life Cycle Cost of Membrane Water-proofing of Roof - Focused on precaution for securing quality - (건축공사 옥상 도막방수 공법의 LCC 분석 - 품질확보를 위한 사전대책을 중심으로 -)

  • Bae, Jae-Wook;Shin, Seung-Moon;Kim, Sang-Gap;Koo, Choong-Wan;Hong, Tae-Hoon;Koo, Kyo-Jin;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.57-65
    • /
    • 2008
  • As the society is being developed, the desire about life quality is also growing. Even though the process of waterproof work has very close relation with these life quality, we always focus on management after problem than the precaution of problem. So this process has the highest rate of mengel. We develop LCC analysis model considering the precaution and try to show the necessity of the precaution by comparing and analyzing every alternative proposal during LCC. By studying of the previous work and the result of questionnaire, we deduce the problem of waterproof work in construction area. By discussion with an expert in this process and research, we make solutions about precaution and set the cost items in every alternative proposal about these solutions. We understand the effect of each elements through sensitive analysis of the cost items, and find the economically best suited solution.

A Framework for Analyzing the Life Cycle Value of a Product in Conceptual Design (개념설계 단계에서의 제품 라이프사이클 가치분석을 위한 프레임워크 개발)

  • Gwak Min-Jeong;Hong Yu-Seok;Jo Nam-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1832-1839
    • /
    • 2006
  • 제품의 개념설계 단계는 제품의 주요특성과 라이프 사이클 전반에서 발생하는 Life Cycle Cost(LCC)의 대부분을 결정하는 중요한 단계이다. 이에 따라 개념설계 단계에서의 Life Cycle Cost Analysis(LCCA)의 필요성이 강조되고 있다. 그러나 LCCA는 제품의 경제성과 사용성, 친환경성 사이에서의 합리적인 의사결정을 지원하기에 한계가 있다. 본 논문은 개념설계 단계에서의 새로운 의사결정지원도구로서 기업 관점의 제품 라이프사이클 기업 가치(LCCV)분석 프레임워크를 제안하고, 그 핵심모듈인 기업 비용 예측모델 (LCCCEM)을 소개한다. 이 프레임워크를 통해 기업이 제품의 경제성과 시장성, 친환경성 사이에서 보다 전략적이고 합리적인 의사결정을 수행하도록 지원할 수 있을 것으로 기대한다.

  • PDF

A Comparative Analysis of Life Cycle Cost on the Window Glass and the Insulation Film Coated Glass for Window (창호 유리의 단열필름 시공에 따른 생애주기비용 비교 분석)

  • Jeong, Mingu;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.583-590
    • /
    • 2014
  • The purpose of this study is to analyze and compare the life cycle cost of window glass with insulation film and regular glass, to verify an economical window construction method. As an approach method, the thermal performance data of each type of glass was measured using Window 6.3 and ECO2-OD Simulation Program, applied it to the case building to calculate the air conditioning and heating maintenance costs and LCC, and compared the economic feasibility. As a result, installing an additional insulation film prevents the solar heat penetration in the summer, so it reduces the cooling cost, on the other hand, it increased heating cost in winter. From the life cycle cost perspective, the effect of cooling cost reduction does not counterbalance the increase in heating cost and the additional cost from film installation and repair; therefore, the installation of insulation film may not be a proper method.