• 제목/요약/키워드: life stresses

검색결과 771건 처리시간 0.03초

스트레스성 자극에 의한 항산화효소 유도와 허혈/재관류 심장 보호효과 (Effects of in vivo-stresses on the Activities of the Myocardial Antioxidant Enzymes and the Ischemia-Reperfusion Injury in Rat Hearts)

  • 박종완;김영훈;김명석
    • Toxicological Research
    • /
    • 제11권1호
    • /
    • pp.161-168
    • /
    • 1995
  • It has been found that various stress challenges induce the myocardial antioxidant enzymes and produce an acquisition of the cellular resistance to the ischemic injury in animal hearts. Most of the stresses, however, seem to be guite dangerous to an animal's life. In the present study, therefore, we tried to search for safely applicable stress modalities which could lead to the induction of antioxidant enzymes and the production of myocardial tolerance to the ischemia-reperfusion injury. Male Sprague-Dawley rats (200-250 g) were exposed to various non-fatal stress conditions, i.e., hyperthermia (environmental temperature of $42^{\circ}C$ for 30 min, non-anesthetized animal), iramobilization (60 min), treadmill exercise (20 m/min, 30min), swimming (30 min), and hyperbaric oxyflenation (3 atm, 60 min), once a day for 5 days. The activities of myocardial antioxidant enzymes and the ischemia-reperfusion injury of isolated hearts were evaluated at 24 hr after the last application of the stresses. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (G6PD), were assayed in the freshly excised ventricular tissues. The ischemia-reperfusion injury was produced by 20 min-global ischemia followed by 30 min-reperfusion using a Langendorff perfusion system. In swimming and hyperbaric oxygenation groups, the activities of SOD and G6PD increased significantly and in the hyperthermia group, the catalase activity was elevated by 63% compared to the control. The percentile recoveries of cardiac function at 30 min of the post-ischemic reperfusion were 55.4%, 73.4%, and 74.2% in swimming, the hyperbaric oxygenation and the hyperthermia groups, respectively. The values were significantly higher than that of the control (38.6%). In additions, left ventricular end-diastolic pressure and lactate dehydrogenase release were significantly reduced in the stress groups. The results suggest that the antioxidant enzymes in the heart could be induced by the apparently safe in vivo-stresses and this may be involved in the myocardial protection from the ischemia-reperfusion injury.

  • PDF

요양시설 입소노인의 일반적 특성에 따른 스트레스와 생활행동지수에 관한 연구 (A Study about a Stress and index of Living Activity in accordance with the General Characteristics of Elderly Nursing Home Residents)

  • 최정희;조성제
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4184-4190
    • /
    • 2014
  • 본 연구의 목적은 요양시설 입소노인의 일반적 특성에 따른 스트레스와 생활행동지수를 파악하고자 한다. 연구대상은 서울시 N구에 거주하는 입소노인과 강원도 횡성군 S면 거주하는 입소노인 110명 대상으로 2013년 5월 1일부터 9월30일까지 설문조사를 실시하였다. 자료 분석은 SPSS/WIN 18.0 프로그램을 이용하여 t-test, 상관분석, 다중회귀분석방법 등을 실시하였고, 실증분석은 유의수준 5%에서 검증하였다. 분석결과는 첫째, 입소 증후군은 일상적 스트레스의 가족왕래부족 스트레스와 정의 상관이 있었다. 둘째, 우울증상은 일상적 스트레스의 개인시공간부족, 가족왕래부족 스트레스와 정의 상관이 있었다. 셋째, 체중조절은 일상적 스트레스의 개인시공간부족 스트레스와만 정의 상관이 있었으며, 영양결핍증상은 일상적 스트레스의 가족왕래부족 스트레스와만 정의 상관이 있었다. 본 연구의 시사점은 입소노인의 일반적 특성에 따른 스트레스와 생활행동지수 정책의 기초자료가 될 것으로 사료된다.

크리프 해석을 통한 터빈 블레이드의 수명 예측 (Life Prediction Analysis of Power Generation Turbine Blades Through Creep Analysis)

  • 박정선;이수용;김종운;이안성
    • 한국항공우주학회지
    • /
    • 제30권8호
    • /
    • pp.103-111
    • /
    • 2002
  • 열하중과 원심력을 고려한 발전용 터빈 블레이드의 정상 상태 크리프 해석을 수행하였다. 3차원 터빈 블레이드 유한 요소 모델에 대하여 크리프 변형률과 응력을 계산하고 수치적 방법에 의해 크리프 수명을 예측하였다. 약 200시간 정도의 크리프 해석 결과 GTD111 터빈 블레이드는 아직 파손 응력에 도달하지 않았으며, 크리프 응력은 시간이 경과함에 따라 점차 이완되고 있다. 터빈 블레이드의 최대 크리프 변형률은 익형의 압력면 끝단에서 발생하며 수치적 방법에 의해 약 50,000 시간 이후에 파손 변형률에 도달할 것이다. 따라서 현재 터빈의 기동 중 블레이드는 크리프에 의한 손상을 입지 않는다.

Cloning and Characterization of the HSP70 Gene, and Its Expression in Response to Diapauses and Thermal Stress in the Onion Maggot, Delia antiqua

  • Chen, Bin;Kayukawa, Takumi;Monteiro, Antonia;Ishikawa, Yukio
    • BMB Reports
    • /
    • 제39권6호
    • /
    • pp.749-758
    • /
    • 2006
  • The cytosolic members of the HSP70 family of proteins play key roles in the molecular chaperone machinery of the cell. In the study we cloned and sequenced the full-length cDNA of Delia antiqua HSP70 gene, which is 2461 bp long and encodes 643 a.a. with a calculated molecular mass of 70,787 Da. We investigated gene copies of cytosolic HSP70 members of 4 insect species with complete genome available, and found that they are quite variable with species. In order to characterize this protein we carried out an alignment and a phylogenetic analysis with 41 complete protein sequences from insects. The analysis divided the cytosolic members of the family into two classes, HSP70 and HSC70, distinguishable on the basis of 15 residues. HSP70 class members were slightly shorter in length and smaller in molecular mass relative to the HSC70 class members, and the conservative and functional regions in these sequences were documented. Mainly, we investigated the expression of Delia antiqua HSP70 gene, in response to diapauses and thermal stresses. Both summer and winter diapauses elevated HSP70 transcript levels. Cold-stress led to increased HSP70 expression levels in summer- and winter-diapausing pupae, but heat-stress elevated the levels only in the winter-diapausing pupae. In all cases, the expression levels, after being elevated, gradually decreased with time. HSP70 expression was low in non-diapausing pupae but was up-regulated following cold- and heat-stresses. Heat-stress gradually increased the mRNA level with time whereas cold-stress gradually decreased levels after an initial increase.

Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature

  • Min, Bonggyu;Kim, Kkotnim;Li, Vladimir;Cho, Seoae;Kim, Heebal
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.739-748
    • /
    • 2020
  • In this study, a method of heat adaptation was implemented in an attempt to increase the upper thermal threshold of two Streptococcus thermophilus found in South Korea and identified the alterations in membrane fatty acid composition to adaptive response to heat. In order to develop heat tolerant lactic acid bacteria, heat treatment was continuously applied to bacteria by increasing temperature from 60℃ until the point that no surviving cell was detected. Our results indicated significant increase in heat tolerance of heat-adapted strains compared to the wild type (WT) strains. In particular, the survival ratio of basically low heat-tolerant strain increased even more. In addition, the strains with improved heat tolerance acquired cross protection, which improved their survival ratio in acid, bile salts and osmotic conditions. A relation between heat tolerance and membrane fatty acid composition was identified. As a result of heat adaptation, the ratio of unsaturated to saturated fatty acids (UFA/SFA) and C18:1 relative concentration were decreased. C6:0 in only heat-adapted strains and C22:0 in only the naturally high heat tolerant strain were detected. These results support the hypothesis, that the consequent increase of SFA ratio is a cellular response to environmental stresses such as high temperatures, and it is able to protect the cells from acid, bile salts and osmotic conditions via cross protection. This study demonstrated that the increase in heat tolerance can be utilized as a mean to improve bacterial tolerance against various environmental stresses.

Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets

  • Ma, Qian;Yang, Jingli
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1287-1300
    • /
    • 2018
  • Hydrogen sulfide ($H_2S$), a small bioactive gas, has been proved functioning in plant growth and development as well as alleviation of abiotic stresses, which including promoting seed germination, accelerating embryonic root growth, regulating flower senescence, inducing stomatal closure, and defending drought, heat, heavy metals and osmotic stresses etc. However, the molecular functioning mechanism of $H_2S$ was still unclear. The primary objective of this research was to analyze the transcriptional differences and functional genes involved in the $H_2S$ responses. In details, 4-week-old plantlets in tissue culture of grapevine (Vitis vinifera L.) cultivar 'Zuoyouhong' were sprayed with 0.1 mM NaHS for 12 h, and then transcriptome sequencing and qRT-PCR analysis were used to study the transcriptional differences and functional genes involved in the $H_2S$ responses. Our results indicated that 650 genes were differentially expressed after $H_2S$ treatment, in which 224 genes were up-regulated and 426 genes were down-regulated. The GO enrichment analysis and KEGG enrichment analysis results indicated that the up-regulated genes after $H_2S$ treatment focused on carbon metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, and the down-regulated genes were mainly in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. Analyzing the transcription factor coding genes in details, it was indicated that 10 AP2/EREBPs, 5 NACs, 3 WRKYs, 3 MYBs, and 2 bHLHs etc. transcription factor coding genes were up-regulated, while 4 MYBs, 3 OFPs, 3 bHLHs, 2 AP2/EREBPs, 2 HBs etc. transcription factor coding genes were down-regulated. Taken together, $H_2S$ increased the productions in secondary metabolites and a variety of defensive compounds to improve plant development and abiotic resistance, and extend fruits postharvest shelf life by regulating the expression of AP2/EREBPs, WRKYs, MYBs, CABs, GRIP22, FERRITINs, TPSs, UGTs, and GHs etc.

RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants

  • Cho, Seok Keun;Ryu, Moon Young;Kim, Jong Hum;Hong, Jeong Soo;Oh, Tae Rin;Kim, Woo Taek;Yang, Seong Wook
    • BMB Reports
    • /
    • 제50권8호
    • /
    • pp.393-400
    • /
    • 2017
  • Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants.

냉장고 도어스위치의 가속수명시험 (Accelerated Life Test for Door Switch of Refrigerator)

  • 유동수;김상욱;장영기;문철희
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제5권2호
    • /
    • pp.273-287
    • /
    • 2005
  • Accelerated life test models and procedure are developed to assess the reliability of Refrigerator door switch. The main function of door switch is to operate bulb lamp and fan motor in the refrigerating room. The accelerated life test method and test equipments are developed using the relationship between stresses and life characteristics of the products. Using the developed accelerated life test method, the parameters of the ALT model and life time distribution are estimated and the reliability of the Door S/W at use condition if assessed. The proposed accelerated life test method and procedure may be extended and applied to testing similar kinds of products to reduce test time and costs of the tests remarkably.

  • PDF

산모의 생활스트레스, 사회적 지지 및 우울의 관계 (The Relationship Among the Degrees of Life Stress, Social Support and Depression in Postpartal Women)

  • 최순희
    • 기본간호학회지
    • /
    • 제8권2호
    • /
    • pp.199-209
    • /
    • 2001
  • The purpose of this study was to examine the relationship between life stress and depression, and the effect of social support in postpartal $4{\sim}6$ week women. Theoretically social support is thought to mediate the relationship between life stress and depression. Data were collected from June 1 to July 30, 1999. The data were analysed by use of SPSS. Two hypotheses were tested using Gamma, a measure of association for ordinal variables. Partial gamma was used to test the third hypothesis. Patterns of elaboration described by Babbie(1986) were selected to interpret the relationship of the three variables in the analyses. The results of this study are summarized as follows ; There was a positive relationship between life stress and depression (Gamma=.45, P=.017), and an inverse relationship between social support and depression (Gamma=-.49, P=.009). Thus the first, two hypotheses were supported. 2. When social support was controlled, the relationship between life stress and depression increased under the condition of low social support, but with high social support, the relationship decreased. It can be interpreted that life stresses are positively related to depression under the condition of low social support, however this relationship cannot be expected with high social support.

  • PDF

Proteomics를 이용한 고랭지 배추의 고온장해 해석 (Proteomic Analyses of Chinese Cabbage(Brassica campestris L. pekinensis) Affected by High Temperature Stresses in Highland Cultivation During Summer in Korea)

  • 신평균;홍성창;장안철;김상효;이기상
    • 생명과학회지
    • /
    • 제17권12호
    • /
    • pp.1649-1653
    • /
    • 2007
  • 무더운 날씨가 지속됨으로서 고랭지배추의 생장 및 결구가 지연되고 있는 강원도 정선군 질운산(새빗재)의 600 m와 900 m의 배추를 사용하여 무기성분 및 단백질 발현패턴을 분석하였다. 식물체 무기성분에서는 생장에 관련된 질소 및 인산의 부족현상과 결구에 관련된 칼슘이 부족하였다. 단백체 분석은 2차원 전기영동에 의해 전체 126개의 단백질이 분리되었고 그중 48개의 단백질이 고도에 따라 변화하는 양상을 보여주었다. 이 중에서 30개의 단백질 서열이 결정되었는데, 해발 900 m에서 단백질 발현이 증가한 14개 중에서 oxygen- evolving proteins, rubisco activase and ATPase 등이, 해발 600 m에서는 glutathione S-transferase (1, 28 kD cold induced- and 24kD auxin-binding proteins) and salt-stress induced protein 등 16개의 단백질 발현이 증가하였다. 이러한 단백질은 식물체 손상에 대한 보호기작을 가진 스트레스관련 단백질로 가뭄, 온도상승, 밤낮의 온도차 등의 반복으로 복합적이며 동시 다발적으로 나타나는 고온장해 현상으로 사료된다.