• 제목/요약/키워드: license plate recognition system

검색결과 110건 처리시간 0.051초

Multi-Style License Plate Recognition System using K-Nearest Neighbors

  • Park, Soungsill;Yoon, Hyoseok;Park, Seho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2509-2528
    • /
    • 2019
  • There are various styles of license plates for different countries and use cases that require style-specific methods. In this paper, we propose and illustrate a multi-style license plate recognition system. The proposed system performs a series of processes for license plate candidates detection, structure classification, character segmentation and character recognition, respectively. Specifically, we introduce a license plate structure classification process to identify its style that precedes character segmentation and recognition processes. We use a K-Nearest Neighbors algorithm with pre-training steps to recognize numbers and characters on multi-style license plates. To show feasibility of our multi-style license plate recognition system, we evaluate our system for multi-style license plates covering single line, double line, different backgrounds and character colors on Korean and the U.S. license plates. For the evaluation of Korean license plate recognition, we used a 50 minutes long input video that contains 138 vehicles of 6 different license plate styles, where each frame of the video is processed through a series of license plate recognition processes. From two experiments results, we show that various LP styles can be recognized under 50 ms processing time and with over 99% accuracy, and can be extended through additional learning and training steps.

방향 정규화 및 CNN 딥러닝 기반 차량 번호판 인식에 관한 연구 (A Study on the License Plate Recognition Based on Direction Normalization and CNN Deep Learning)

  • 기재원;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제25권4호
    • /
    • pp.568-574
    • /
    • 2022
  • In this paper, direction normalization and CNN deep learning are used to develop a more reliable license plate recognition system. The existing license plate recognition system consists of three main modules: license plate detection module, character segmentation module, and character recognition module. The proposed system minimizes recognition error by adding a direction normalization module when a detected license plate is inclined. Experimental results show the superiority of the proposed method in comparison to the previous system.

신중한 분류기와 학습 예제 가중치 조정을 이용한 차량번호판인식시스템의 인식성능 향상 방안 (Vehicle License Plate Recognition System Using the Cautious Classifier and the Weighted Instance Method)

  • 백남철;이상협;류광렬
    • 대한토목학회논문집
    • /
    • 제26권4D호
    • /
    • pp.549-551
    • /
    • 2006
  • 차량번호판인식시스템은 무인 카메라 등의 영상장치를 통하여 입력된 차량 이미지로부터, 차량번호판 정보를 읽어내는 시스템이다. 이러한 차량번호판인식시스템의 응용 시스템 중 과속차량 단속과 같은 일부 응용 시스템은 번호판의 글자나 숫자를 다른 글자나 숫자로 잘못 인식할 경우 심각한 문제를 발생시킬 수 있다. 이러한 문제를 피하기 위해 우리는 인식 결과에 대한 신뢰도가 낮은 경우 인식을 포기 또는 위임하는 '신중한 분류기(Cautious Classifier)'를 이용하여 인식시스템을 구성하였다. 또한 학습 예제의 가중치를 조정하는 방법을 사용하여 이러한 신중한 분류기의 성능을 향상시켰다.

License Plate Recognition System Using Artificial Neural Networks

  • Turkyilmaz, Ibrahim;Kacan, Kirami
    • ETRI Journal
    • /
    • 제39권2호
    • /
    • pp.163-172
    • /
    • 2017
  • A high performance license plate recognition system (LPRS) is proposed in this work. The proposed LPRS is composed of the following three main stages: (i) plate region determination, (ii) character segmentation, and (iii) character recognition. During the plate region determination stage, the image is enhanced by image processing algorithms to increase system performance. The rectangular license plate region is obtained using edge-based image processing methods on the binarized image. With the help of skew correction, the plate region is prepared for the character segmentation stage. Characters are separated from each other using vertical projections on the plate region. Segmented characters are prepared for the character recognition stage by a thinning process. At the character recognition stage, a three-layer feedforward artificial neural network using a backpropagation learning algorithm is constructed and the characters are determined.

Multi-National Integrated Car-License Plate Recognition System Using Geometrical Feature and Hybrid Pattern Vector

  • Lee, Su-Hyun;Seok, Young-Soo;Lee, Eung-Joo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1256-1259
    • /
    • 2002
  • In this paper, we have proposed license plate recognition system for multi-national vehicle license plate using geometric features along with hybrid and seven segment pattern vectors. In the proposed system, we suggested to find horizontal and vertical relation after going through preparation process with inputted real-time license plate image of Korea and Japan, and then to classify license plate with using characteristic and geometric information of license plates. It classifies the extracted license plate images into letters and numbers, such as local name, local number, classification character and license consecutive numbers, and recognize license plate of Korea and Japan by applying hybrid and seven segments pattern vectors to classified letter and number region. License plate extraction step of the proposed system uses width and length information along with relative rate of Korean and Japanese license plate. Moreover, it exactly segmentation by letters with using each letter and number position information within license plate region, and recognizes Korean and Japanese license plates by applying hybrid and seven segment pattern vectors, containing characteristics related to letter size and movement within segmented letter area. As the result of testing the proposed system in real experiment, it recognized regardless of external lighting conditions as well as classifying license plates by nations, Korea and Japan. We have developed a system, recognizing regardless of inputted structural character of vehicle licenses and external environment.

  • PDF

임베디드 시스템에서의 템플릿 매칭 기법을 이용한 번호판 인식 시스템 개발 (The Development of a License Plate Recognition System using Template Matching Method in Embedded System)

  • 김홍희;이재흥
    • 전기전자학회논문지
    • /
    • 제15권4호
    • /
    • pp.274-280
    • /
    • 2011
  • 본 연구에서는 SoC를 이용한 임베디드 시스템에 리눅스 OS 환경을 구축하고 번호판 인식 시스템을 구현하여 그 성능을 측정하였다. 자동차 번호판을 인식하기 위해서는 번호판을 검출하고 검출된 번호판을 보정 한 뒤 각 문자들에 대해 인식을 한다. 번호판 검출 방법으로는 레이블링 기법과 숫자의 특징을 이용하여 검출하였다. 검출된 번호판의 표기되어 있는 숫자들은 각각의 좌표가 있다. 이러한 숫자들의 좌표를 비교하여 영상을 보정하고 템플릿 매칭을 통해 인식을 한다. 그 결과로 번호판의 검출율은 96%, 문자 인식률은 73%, 숫자 인식률은 97%로 나타났다. 인식 시스템은 기존의 PC기반이 아닌 임베디드 보드에서 측정 되었으며 총 인식시간은 약 0.66초가 소요되었다.

YOLOv5에서 가상 번호판 생성을 통한 차량 번호판 인식 시스템에 관한 연구 (A Study on Vehicle License Plate Recognition System through Fake License Plate Generator in YOLOv5)

  • 하상현;정석찬;전영준;장문석
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.699-706
    • /
    • 2021
  • Existing license plate recognition system is used as an optical character recognition method, but a method of using deep learning has been proposed in recent studies because it has problems with image quality and Korean misrecognition. This requires a lot of data collection, but the collection of license plates is not easy to collect due to the problem of the Personal Information Protection Act, and labeling work to designate the location of individual license plates is required, but it also requires a lot of time. Therefore, in this paper, to solve this problem, five types of license plates were created using a virtual Korean license plate generation program according to the notice of the Ministry of Land, Infrastructure and Transport. And the generated license plate is synthesized in the license plate part of collectable vehicle images to construct 10,147 learning data to be used in deep learning. The learning data classifies license plates, Korean, and numbers into individual classes and learn using YOLOv5. Since the proposed method recognizes letters and numbers individually, if the font does not change, it can be recognized even if the license plate standard changes or the number of characters increases. As a result of the experiment, an accuracy of 96.82% was obtained, and it can be applied not only to the learned license plate but also to new types of license plates such as new license plates and eco-friendly license plates.

Segmentation and Recognition of Korean Vehicle License Plate Characters Based on the Global Threshold Method and the Cross-Correlation Matching Algorithm

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.661-680
    • /
    • 2016
  • The vehicle license plate recognition (VLPR) system analyzes and monitors the speed of vehicles, theft of vehicles, the violation of traffic rules, illegal parking, etc., on the motorway. The VLPR consists of three major parts: license plate detection (LPD), license plate character segmentation (LPCS), and license plate character recognition (LPCR). This paper presents an efficient method for the LPCS and LPCR of Korean vehicle license plates (LPs). LP tilt adjustment is a very important process in LPCS. Radon transformation is used to correct the tilt adjustment of LP. The global threshold segmentation method is used for segmented LP characters from two different types of Korean LPs, which are a single row LP (SRLP) and double row LP (DRLP). The cross-correlation matching method is used for LPCR. Our experimental results show that the proposed methods for LPCS and LPCR can be easily implemented, and they achieved 99.35% and 99.85% segmentation and recognition accuracy rates, respectively for Korean LPs.

객체 검출과 한글 손글씨 인식 알고리즘을 이용한 차량 번호판 문자 추출 알고리즘 (Vehicle License Plate Text Recognition Algorithm Using Object Detection and Handwritten Hangul Recognition Algorithm)

  • 나민원;최하나;박윤영
    • 한국IT서비스학회지
    • /
    • 제20권6호
    • /
    • pp.97-105
    • /
    • 2021
  • Recently, with the development of IT technology, unmanned systems are being introduced in many industrial fields, and one of the most important factors for introducing unmanned systems in the automobile field is vehicle licence plate recognition(VLPR). The existing VLPR algorithms are configured to use image processing for a specific type of license plate to divide individual areas of a character within the plate to recognize each character. However, as the number of Korean vehicle license plates increases, the law is amended, there are old-fashioned license plates, new license plates, and different types of plates are used for each type of vehicle. Therefore, it is necessary to update the VLPR system every time, which incurs costs. In this paper, we use an object detection algorithm to detect character regardless of the format of the vehicle license plate, and apply a handwritten Hangul recognition(HHR) algorithm to enhance the recognition accuracy of a single Hangul character, which is called a Hangul unit. Since Hangul unit is recognized by combining initial consonant, medial vowel and final consonant, so it is possible to use other Hangul units in addition to the 40 Hangul units used for the Korean vehicle license plate.

가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안 (Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System)

  • 이승주;박구만
    • 방송공학회논문지
    • /
    • 제25권5호
    • /
    • pp.776-788
    • /
    • 2020
  • 본 논문에서는 딥러닝을 이용한 차종 인식과 자동차 번호판 문자 인식 시스템을 제안한다. 기존 시스템에서는 영상처리를 통한 번호판 영역 추출과 DNN을 이용한 문자 인식 방법을 사용하였다. 이러한 시스템은 환경이 변화되면 인식률이 하락되는 문제가 있다. 따라서, 제안하는 시스템은 실시간 검출과 환경 변화에 따른 정확도 하락에 초점을 맞춰 1-stage 객체 검출 방법인 YOLO v3를 사용하였으며, RGB 카메라 한 대로 실시간 차종 및 번호판 문자 인식이 가능하다. 학습데이터는 차종 인식과 자동차 번호판 영역 검출의 경우 실제 데이터를 사용하며, 자동차 번호판 문자 인식의 경우 가상 데이터만을 사용하였다. 각 모듈별 정확도는 차종 검출은 96.39%, 번호판 검출은 99.94%, 번호판 검출은 79.06%를 기록하였다. 이외에도 YOLO v3의 경량화 네트워크인 YOLO v3 tiny를 이용하여 정확도를 측정하였다.