• 제목/요약/키워드: lexicon-based analysis

검색결과 56건 처리시간 0.028초

Maximum Likelihood-based Automatic Lexicon Generation for AI Assistant-based Interaction with Mobile Devices

  • Lee, Donghyun;Park, Jae-Hyun;Kim, Kwang-Ho;Park, Jeong-Sik;Kim, Ji-Hwan;Jang, Gil-Jin;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4264-4279
    • /
    • 2017
  • In this paper, maximum likelihood-based automatic lexicon generation using mixed-syllables is proposed for unlimited vocabulary voice interface for East Asian languages (e.g. Korean, Chinese and Japanese) in AI-assistant based interaction with mobile devices. The conventional lexicon has two inevitable problems: 1) a tedious repetition of out-of-lexicon unit additions to the lexicon, and 2) the propagation of errors during a morpheme analysis and space segmentation. The proposed method provides an automatic framework to solve the above problems. The proposed method produces a level of overall accuracy similar to one of previous methods in the presence of one out-of-lexicon word in a sentence, but the proposed method provides superior results with the absolute improvements of 1.62%, 5.58%, and 10.09% in terms of word accuracy when the number of out-of-lexicon words in a sentence was two, three and four, respectively.

감정점수의 전파를 통한 한국어 감정사전 생성 (Generating a Korean Sentiment Lexicon Through Sentiment Score Propagation)

  • 박호민;김창현;김재훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권2호
    • /
    • pp.53-60
    • /
    • 2020
  • 감정분석은 문서 또는 대화상에서 주어진 주제에 대한 태도와 의견을 이해하는 과정이다. 감정분석에는 다양한 접근법이 있다. 그 중 하나는 감정사전을 이용하는 사전 기반 접근법이다. 본 논문에서는 널리 알려진 영어 감정사전인 VADER를 활용하여 한국어 감정사전을 자동으로 생성하는 방법을 제안한다. 제안된 방법은 세 단계로 구성된다. 첫 번째 단계는 한영 병렬 말뭉치를 사용하여 한영 이중언어 사전을 제작한다. 제작된 이중언어 사전은 VADER 감정어와 한국어 형태소 쌍들의 집합이다. 두 번째 단계는 그 이중언어 사전을 사용하여 한영 단어 그래프를 생성한다. 세 번째 단계는 생성된 단어 그래프 상에서 레이블 전파 알고리즘을 실행하여 새로운 감정사전을 구축한다. 이와 같은 과정으로 생성된 한국어 감정사전을 유용성을 보이려고 몇 가지 실험을 수행하였다. 본 논문에서 생성된 감정사전을 이용한 감정 분류기가 기존의 기계학습 기반 감정분류기보다 좋은 성능을 보였다. 앞으로 본 논문에서 제안된 방법을 적용하여 여러 언어의 감정사전을 생성하려고 한다.

Romanian-Lexicon-Based Sentiment Analysis for Assesing Teachers' Activity

  • Barila, Adina;Danubianu, Mirela;Gradinaru, Bogdanel
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.43-50
    • /
    • 2022
  • The students' feedback is important to measure and improve teaching performance. Many teacher performance evaluation systems are based on responses to closed question, but the free text answers can contain useful information which had to be explored. In this paper we present a lexicon-based sentiment analysis to explore students' text feedback. The data was collected from a system for the evaluation of teachers by students developed and used in our university. The students comments are in Romanian language so we built a Romanian sentiment word lexicon. We used this to categorize the feeback text as positive, negative or neutral. In addition, we added a new polarity - indifferent - in order to categorize blank and "I don't answer" responses.

Text Mining and Sentiment Analysis for Predicting Box Office Success

  • Kim, Yoosin;Kang, Mingon;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.4090-4102
    • /
    • 2018
  • After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.

한국어 장소 리뷰를 이용한 공간 감성어 사전 구축 방법 (Method for Spatial Sentiment Lexicon Construction using Korean Place Reviews)

  • 이영민;권필;유기윤;김지영
    • 대한공간정보학회지
    • /
    • 제25권2호
    • /
    • pp.3-12
    • /
    • 2017
  • 위치 기반 서비스를 이용하여 자신이 방문한 장소에 대한 긍정 혹은 부정적 의견을 리뷰로 남기는 것이 일상화되고 있다. 실제 방문자가 작성한 장소 리뷰에 대한 감성분석 결과는 잠재적 소비자뿐 아니라 기업에게도 유용한 정보를 제공할 수 있다. 장소에 대한 감성분석을 실시하기 위해서는 감성분석의 기준이 되는 어휘에 대한 사전이 필요하다. 그러나 현재까지 장소를 표현하는 공간 감성어에 대한 사전이 구축된 바 없다. 이에 본 연구는 실제 방문자가 한국어로 작성한 장소 리뷰 데이터를 분석하여 공간 감성어 사전을 구축하는 방법을 제안하며, 여러 장소 카테고리 중 테마공원을 대상으로 공간 감성어 사전을 구축하였다. 이를 위해 자연어 처리 기법과 통계적 기법을 활용하였으며, 사전에 포함되는 공간 감성어는 감성의 극성에 대한 정보와 극성의 정도에 대한 확률점수를 포함하고 있다. 본 연구에서 구축한 공간 감성어 사전은 3개의 테이블(SSLex_SS, SSLex_single, SSLex_combi)로 구성되며, 총 219개의 어휘를 포함한다. 이를 바탕으로 트위터에서 테마공원에 대해 작성된 글을 대상으로 감성분석을 실시하였으며, 감성의 극성 분류에 대한 전체 정확도가 0.714로 산출됨에 따라 사전의 유효성을 확인할 수 있었다.

래티스상의 구조적 분류에 기반한 한국어 형태소 분석 및 품사 태깅 (Lattice-based Discriminative Approach for Korean Morphological Analysis)

  • 나승훈;김창현;김영길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제41권7호
    • /
    • pp.523-532
    • /
    • 2014
  • 본 논문에서는 래티스상의 구조적 분류에 기반한 한국어 형태소 분석 및 품사 태깅을 수행하는 방법을 제안한다. 제안하는 방법은 입력문이 주어질 때 어휘 사전(lexicon)을 참조하여, 형태소를 노드로 취하고 인접형태소간의 에지를 갖도록 래티스를 구성하며, 구성된 래티스상 가장 점수가 높은 경로상에 있는 형태소들을 분석 결과로 제시하는 방법이다. 실험 결과, ETRI 품사 부착 코퍼스에서 기존의 1차 linear-chain CRF에 기반한 방법보다 높은 어절 정확률 그리고 문장 정확률을 얻었다.

Word2Vec을 활용한 뉴스 기반 주가지수 방향성 예측용 감성 사전 구축 (News based Stock Market Sentiment Lexicon Acquisition Using Word2Vec)

  • 김다예;이영인
    • 한국빅데이터학회지
    • /
    • 제3권1호
    • /
    • pp.13-20
    • /
    • 2018
  • 주식 시장에 대한 예측은 오랜 기간 많은 이들의 꿈이었다. 하지만 수많은 노력에도 불구하고 주식 시장을 정확하게 예측하기란 쉬운 일이 아니었다. 본 연구는 주식 시장의 방향성에 주목하여 이 방향성을 예측할 수 있는 감성사전을 구축하는 새로운 방법을 제시한다. 이를 위해 2015년 1월 1일부터 2017년 12월 31일까지 3년간의 증시 뉴스 25,000여 건의 데이터를 수집하여, 문맥을 고려하기 위한 Word2Vec을 적용하였다. 이를 바탕으로 뉴스에 감성분석을 실시하여 KOSPI 종가 지수를 예측해 보았다.

소셜미디어를 통해 본 재난안전 분야 어휘 사용 양상 분석 (A Study on the Analysis of Disaster Safety Lexicon Patterns in Social Media)

  • 김태영;이정은;오효정
    • 한국콘텐츠학회논문지
    • /
    • 제17권10호
    • /
    • pp.85-93
    • /
    • 2017
  • 재난안전 분야 어휘의 표준화는 성공적인 재난안전사고 예방 및 대응을 위해 가장 기본적인 과정으로서 중요하다. 재난안전 분야의 어휘에 대한 이해 부족은 커뮤니케이션 및 정보공유의 부재로 이어지며, 이는 재난사고 발생 시 적절한 대응을 위한 의사소통에 문제가 될 수 있다. 현재 재난안전 유관기관별로 다양한 재난안전정보가 생산 및 관리되고 있으며, 정보공유를 위해 각 기관에서는 개별적으로 용어사전을 개발하여 활용하고 있다. 따라서 이용자에 따른 재난안전 분야의 어휘 사용 양상의 차이를 실제적으로 파악하는 것은 표준화를 위해 필수적이다. 이에 본 연구는 재난안전 분야의 어휘 사용 양상을 소셜미디어를 중심으로 분석하여 그 차이를 규명하였다. 구체적으로는 재난안전 분야에서 일반 이용자가 사용하는 어휘와 기존 재난안전 유관기관에서 활용하고 있는 어휘자원의 차이점을 비교 분석하였다. 이후 분석 결과를 기반으로 재난안전 분야 표준화 방안을 제안함으로써 용어사전 구축 방향성을 수립하였다.

Classification of Behavioral Lexicon and Definition of Upper, Lower Body Structures in Animation Character

  • Hongsik Pak;Suhyeon Choi;Taegu Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.103-117
    • /
    • 2023
  • This study focuses on the behavioural lexical classification for extracting animation character actions and the analysis of the character's upper and lower body movements. The behaviour and state of characters in the animation industry are crucial, and digital technology is enhancing the industry's value. However, research on animation motion application technology and behavioural lexical classification is still lacking. Therefore, this study aims to classify the predicates enabling animation motion, differentiate the upper and lower body movements of characters, and apply the behavioural lexicon's motion data. The necessity of this research lies in the potential contributions of advanced character motion technology to various industrial fields, and the use of the behavioural lexicon to elucidate and repurpose character motion. The research method applies a grammatical, behavioural, and semantic predicate classification and behavioural motion analysis based on the character's upper and lower body movements.

Bi-LSTM 기반의 한국어 감성사전 구축 방안 (KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon)

  • 박상민;나철원;최민성;이다희;온병원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.219-240
    • /
    • 2018
  • 감성사전은 감성 어휘에 대한 사전으로 감성 분석(Sentiment Analysis)을 위한 기초 자료로 활용된다. 이와 같은 감성사전을 구성하는 감성 어휘는 특정 도메인에 따라 감성의 종류나 정도가 달라질 수 있다. 예를 들면, '슬프다'라는 감성 어휘는 일반적으로 부정의 의미를 나타내지만 영화 도메인에 적용되었을 경우 부정의 의미를 나타내지 않는다. 그렇기 때문에 정확한 감성 분석을 수행하기 위해서는 특정 도메인에 알맞은 감성사전을 구축하는 것이 중요하다. 최근 특정 도메인에 알맞은 감성사전을 구축하기 위해 범용 감성 사전인 오픈한글, SentiWordNet 등을 활용한 연구가 진행되어 왔으나 오픈한글은 현재 서비스가 종료되어 활용이 불가능하며, SentiWordNet은 번역 간에 한국 감성 어휘들의 특징이 잘 반영되지 않는다는 문제점으로 인해 특정 도메인의 감성사전 구축을 위한 기초 자료로써 제약이 존재한다. 이 논문에서는 기존의 범용 감성사전의 문제점을 해결하기 위해 한국어 기반의 새로운 범용 감성사전을 구축하고 이를 KNU 한국어 감성사전이라 명명한다. KNU 한국어 감성사전은 표준국어대사전의 뜻풀이의 감성을 Bi-LSTM을 활용하여 89.45%의 정확도로 분류하였으며 긍정으로 분류된 뜻풀이에서는 긍정에 대한 감성 어휘를, 부정으로 분류된 뜻풀이에서는 부정에 대한 감성 어휘를 1-gram, 2-gram, 어구 그리고 문형 등 다양한 형태로 추출한다. 또한 다양한 외부 소스(SentiWordNet, SenticNet, 감정동사, 감성사전0603)를 활용하여 감성 어휘를 확장하였으며 온라인 텍스트 데이터에서 사용되는 신조어, 이모티콘에 대한 감성 어휘도 포함하고 있다. 이 논문에서 구축한 KNU 한국어 감성사전은 특정 도메인에 영향을 받지 않는 14,843개의 감성 어휘로 구성되어 있으며 특정 도메인에 대한 감성사전을 효율적이고 빠르게 구축하기 위한 기초 자료로 활용될 수 있다. 또한 딥러닝의 성능을 높이기 위한 입력 자질로써 활용될 수 있으며, 기본적인 감성 분석의 수행이나 기계 학습을 위한 대량의 학습 데이터 세트를 빠르게 구축에 활용될 수 있다.