• 제목/요약/키워드: levitation performance

검색결과 141건 처리시간 0.025초

자기부상제어기의 특성해석 (Characteristics Analysis of Magnetic Levitation Conroller)

  • 김종문;김춘경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.735-736
    • /
    • 2006
  • In this paper, the characteristics analysis results of the levitation controller of magnetically-levitated vehicle are presented. To get a good closed-loop system, the observer and controller must be designed to meet the control performance and ride quality requirements. So the transfer functions of the observer filter are described and analysed by using the relative and absolute signal concepts.

  • PDF

자기부상 stage 구동 리니어 모터의 설계 및 특성해석 (Design and Characteristic Analysis of a Linear Motor for Magnetic Levitation)

  • 강규홍;안호진;홍정표;강도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.9-11
    • /
    • 2001
  • This paper deals with design and characteristic analysis of a permanent magnet linear synchronous motor for magnetic levitation stage of semi-conductor manufacture machine. In order to improve the control performance by detent force minimization, skew and PM offset method are used.

  • PDF

저손실 자기부상 시스템 개발 (Development of Low Loss Magnetic Levitation System)

  • 김종문;강도현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.592-600
    • /
    • 2005
  • In this paper, a low loss magnetic levitation(Maglev) system is suggested and tested. The suggested Maglev system includes four hybrid magnets which consist of permanent magnet and coil. In the steady state, the levitated module system can be supported by attraction force generated by permanent magnet. The coil current controls only dynamic loads due to external disturbances. The module systems are designed by using finite element method(FEM) software tools such as MAXWELL and ANSYS. Also, digital control systems are designed to keep the magnet airgap at a constant value. The control systems include a VME(versa module europa)-based CPU(central processing unit) board, AD(analog to digital) board, PWM(pulse width modulation) board, 4-quadrant chopper, and sensors. In order to estimate the vertical velocity of the magnet, we use second order state observer with acceleration and gap signals as input and output signals, respectively. The characteristics of the suggested low loss Maglev system are demonstrated by experimental results showing coil current of 0A in the steady state of 3m airgap and performance specifications are satisfied for reference gap and force disturbance.

초음파를 이용한 물체 부상 이송시스템의 진동 특성 해석 (An Analysis of Vibration Characteristics in Ultrasonic Object Levitation Transport System)

  • 정상화;김현욱;최석봉;김광호;박준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.415-418
    • /
    • 2005
  • In the semiconductor and optical industry, a new transport system which can replace the conventional transport systems is required. The transport systems are driven by the magnetic field and conveyer belts. The magnetic field may damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this semiconductor and optical industry, the non-contact system is required fur reducing the damages. The ultrasonic transportation is the solution of the problem. In this paper, the ultrasonic levitation system fur levitating object are proposed. The 3D vibration profiles of the beam are measured by Laser scanning Vibrometer fur verifying the vibration characteristics of the system and the amplitudes of the beam and the levitation heights of object are measured for evaluating the performance.

  • PDF

앞먹임 신경회로망 제어기를 이용한 자기부상 실험시스템의 제어 (Control of an experimental magnetic levitation system using feedforward neural network controller)

  • 장태정;이재환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1557-1560
    • /
    • 1997
  • In this paper, we have built an experimental magnetic levitation system for a possible use of control education. We have give a mathermatical model of the nonlinear system and have shown the stability region of the linearized system when it is controlled by a PD controller. We also proposed a neural network control system which uses a neural network as a feedforward controller thgether with a conventional feedback PF controller. We have generated a desired output trajectory, which was designed for the benefit of the generalization of the neural network controller, and trained the desired output trajectory, which was desigend for the benefit of the generalization of the neural netowrk controller, and trained a neural network controller with the data of the actual input and the output of the system obtained by applying the desired output trajectroy. A good tracking performance was observed for both the desired trajectiories used and not used for the neural network training.

  • PDF

고이득 관측기를 이용한 자기 베어링 휠용 자기 부상 시스템의 비선형 제어 (Nonlinear Control of an Electromagnetic Levitation System Using High-gain Observers for Mmagnetic Bearing Wheels)

  • 최호림;신희섭;구민성;임종태;김용민
    • 제어로봇시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.573-580
    • /
    • 2009
  • In this paper, we develop a functional test model for magnetic bearing wheels. The functional test model is an electromagnetic levitation system that has three degree of freedom, which consists of one axial suspension from gravity and two axes gimbaling capability to small angels. A nonlinear controller with high-gain observers is proposed and the real-time experiment results show that the rotor is accurately levitated at the desired position and well-balanced, which is a suitable result for the potential use an magnetic bearing wheels. Also, the proposed scheme exhibits better performance when it is compared with the conventional PID control method.

ε조절 요소를 가진 부분 상태 궤환 제어기를 이용한 자기부상 시스템의 제어 (Control of Electromagnetic Levitation System using ε-scaling Partial State Feedback Controller)

  • 박규만;최호림
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1572-1576
    • /
    • 2011
  • The electromagnetic levitation(EMS) system is one of the well-known nonlinear system because of its nonlinearity and several control techniques have been proposed. We propose an ${\epsilon}$-scaling partial feedback controller for the ball position control of the EMS system. The key feature of our proposed controller is the use of the scaling factor ${\epsilon}$ which provides a function of controller gain tuning along with robustness. In this paper, we show the stability analysis of our proposed controller and the convergence analysis of the state observer in terms of ${\epsilon}$-scaling factor. In addition, the experimental results show the validity of the proposed controller and improved control performance over the conventional PID controller.

Design of an Electromagnet with Low Detent Force and its Control for a Maglev Super-speed Vehicle

  • Lim, Jaewon;Kim, C.H.;Han, J.B.;Han, H.S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1667-1673
    • /
    • 2015
  • The vibration and noise caused by the dynamic interaction between electromagnetic suspension and the linear synchronous motor stator beneath a flexible guideway remain problems in designing attractive Maglev trains. One possible method to reduce the sources of vibration is to minimize the detent force in the linear synchronous motor that creates variations in both lift force and thrust. This paper proposes lowering detent force by using separated core instead of single united core. The magnet is designed to adapt to the deflected guideway at a speed of 550km/h. This study will analyze the electromagnetic field and control performance, and how they relate to lift forces and dynamic responses.

초고속 자기부상열차 적용을 위한 초전도 하이브리드 전자석 시작품의 설계 (Design of Prototype Superconducting Hybrid Electromagnet for High Speed Maglev)

  • 이창영;강부병;조정민;한영재;주승열;황영진;조현철;장재영;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권3호
    • /
    • pp.1-4
    • /
    • 2011
  • This paper deals with the design and fabrication of prototype superconducting hybrid electromagnet(SH-EM) for EMS (Electromagnetic suspension)-based Maglev. The design requirements are based on the normal conducting EM used in the German high-speed Maglev. From the MMF-Levitation force curves simulated by FEM analysis, the required MMF by superconducting coil is suggested. As an experimental test setup to demonstrate the SH-EM, the experimental SH-EM with HTS coil cooled in $LN_2$ is fabricated. From the expected operating current of the HTS coil, the levitation performance of the SH-EM is estimated.

$H_{infty}$ 제어기의 자기부상 시스템에의 적용 (The Appoication of $H_{infty}$ Controller to A Magnetic Levitation System)

  • 김종문;김석주;박민국;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권11호
    • /
    • pp.494-502
    • /
    • 2002
  • In this paper, a suspension control of a magnetic levitation(MagLev) system with flexible rail is designed and presented. The numerical modelling for the electromagnetic system to be controlled as a target plant is carried out. And dome kinds of the hardware system including CPU board, AD board, DA board, sensors, and switching power amplifier are described. Using the derived model, the stabilizing controllers, such as PID and $H_{\infty}$ controller, for the MagLev system are designed using the MATLAB toolbox. The designed controllers are validated by some experimental results as well as numerical simulations. So it is shown that $H_{\infty}$ controller can give the better performance for the plant with flexible modes than PID controller.