• Title/Summary/Keyword: lethal concentration of oxygen

Search Result 20, Processing Time 0.036 seconds

Effects on Physiological Activities Caused by Oxygen Deficiency and Exposure to Noxious Gases in SD Rats (Rat를 이용 산소 및 유해가스 노출에 따른 운동성 변화와 치사농도 연구)

  • Kim, Hyeon-Yeong;Lee, Sung-Bae;Han, Jeong-Hee;Kang, Min-Gu;Ye, Byeong-Jin
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.3
    • /
    • pp.181-191
    • /
    • 2009
  • As an effort to prevent serious accidents involving oxygen deficiency and suffocation in confined spaces and to identify the causes of such accidents, the present study investigated relevant accidents and systems in Korea and other countries. This study also conducted a number of experiments at lethal concentration levels of oxygen deficiency using SD rats and observed the changes of experimental animals with humidity, organic gas (toluene), hydrogen sulfide, carbon monoxide and so on at the oxygen deficient environment. The results of the study are as follows. 1. The results from the experiment conducted using SD rats at lethal concentration levels of oxygen showed that there were no casualties at the 7% oxygen concentration level, but the mortality increase to 20% at 6% oxygen, it was jumped to 90% at 5% oxygen, and it was also dramatically reached 100% at 4% oxygen concentration. Therefore, 5.5% was calculated as the $LC_{50}$ (rat, 4hr) from these dose-response experiments with oxygen deficiency. 2. When we changed the level of toluene, $H_2S$, CO, humidity, and so on, in an oxygen deficient environment, it was observed that the small concentrations of $H_2S$ and CO make the highest effect on animals. In case of 350 ppm $H_2S$, it resulted in 30% mortality, and the 100% mortality was shown in 1,200 ppm CO concentration. The mortality increased as an oxygen deficient condition. However in the case of toluene up to 1,000 ppm, it were not affected with oxygen deficiency, and it did not indicate any significant differences in mortality as 20%, 90% humidities.

Bioassay of Marine Animals to the Aquatic Toxicity of Composite Slag and Bituminous Coal (복합슬래그와 석탄에 대한 해산동물의 생물독성 검정)

  • KIM Jin Mee;KIM Kyoung Sun;LEE Jung Ah;SHIN Yun Kyung;PARK Chung Kil;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • Two species of fish and five species of marine invertebrate showed different tolerances to the toxicity of composite slag and bituminaus coal. Especially, Hemicentrotus pulcherrimus and young Haliotis discus hannai displayed marked differences in tolerance from. H. pulcherrimus and young H. discus hannai showed lethal effects at higher concentrations than those concentrations of the composite slag in the 1.0 and $0.4\%$ range, respectively. H. pulcherrimus showed no lethal effects at a lower concentration of $1.0\%$ composite slag and some differences in the rate of oxygen consumption with this concentration of composite slag. The lethal effects of bituminous coal on marine and fisheries organisms, even with higher concentrations, were not observed. At a higher concentration than that of 500 mg/L (ppm) of bituminous coal, decrease effects appeared in the rate of oxygen consumption of the experimental organisms. Taking into consideration that the experimental concentration of composite slag and bituminous coal were impracticable in the ocean, the results of this experiment suggest that composite slag and bituminous coal pose no real threat to marine or fisheries organisms.

A Study on the Mortality in Oxygen and Toxic Gas Concentration According using Experimental Animals (실험동물을 이용 산소 및 유해가스 농도에 따른 치사율 연구)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.18-25
    • /
    • 2013
  • It may occur health hazards or death by suffocation or acute poisoning in case of oxygen deficiency in ambient or exposure to harmful gas. As a part of accident prevention, we studied the change of activity and lethal dose by changing the concentration of several hazardous gas with inhalation exposure chamber and laboratory animals. We investigated the lethality and motility change during either the 4 hrs whole body exposure to oxygen, nitrogen, toluene, $H_2S$, CO and 48 recovery. As results, it is estimated that 5% oxygen concentration as lethal concentration and 5.5% as $LC_{50}$ (rat, 4 hrs) with statistics for dose-response. The results of lethality in oxygen deficient condition (approximately 6%), the lethalities were 40%, 20% with 20 ppm $H_2S$, 600 ppm CO respectively, and was not increased the lethality with 8% CO. Thus, it was confirmed that the $H_2S$, CO had influence to lethal dose, while toluene had low fluence.

Median Lethal Concentration ($LC_{50}$) for 24 Hours of Formalin to Eel, Anguilla japonica (뱀장어에 대한 포르말린의 24시간 반수치사농도 ($LC_{50}$))

  • Jung, Sung-Hee;Lee, Joo-Seok;Jee, Bo-Young;Seo, Jung-Soo;Kim, Jin-Woo;Kim, Eung-Oh
    • Journal of fish pathology
    • /
    • v.20 no.2
    • /
    • pp.161-167
    • /
    • 2007
  • Acute toxicity of formalin (37% formaldehyde) was conducted to determine the median lethal concentration (LC50) on eel (avarage weight 96 ± 3.6 g, average total length 43 cm), Anguilla japonica at concentrations ranging from 0 to 500 ppm. In particular, this study was designed to estimate the safety concentrations of formalin in testing eels to eradicate Pseudodactylogyrus. All fish died after 10 hours and 24 hours at 500 ppm and 400 ppm, respectively. After 24 hours, cumulative mortality was 96.6% and 13.3% at 300 ppm and 200 ppm formalin, respectively. However, all experimental fish were alive after 24 hours at 100 ppm. The lethal concentration values were computed by using non-linear least square method. At the start of the test, water temperature, pH and dissolved oxygen level were 27~28℃, 7.4 and 5.55 ppm, respectively. The 24 hr-LC50 were 269 ppm.

Production of Antibacterial Violet Pigment by Psychrotropic Bacterium RT102 Strain

  • Nakamura, Yoshitoshi;Asada, Chikako;Sawada, Tatsuro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.37-40
    • /
    • 2003
  • The antibacterial action of violet pigment, a mixture of violacein and deoxyviolacein, isolated from phychrotrophic bacterium RT102 strain was examined, and the operational conditions for the effective production of violet pigment were studied. The antibacterial activity of the violet pigment was confirmed for several bacteria such as Bacillus licheniformis, Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, and Pseudomonas aeruginosa, and the high concentration of violet pigment, above about 15mg/L, caused not only growth inhibition but also death of cells. The growth properties of RT102 strain were clarified under various incubation conditions such as pH, temperature, and dissolved oxygen concentration. The maximum violet pigment concentration, i.e. 3.7 g/L, and the maximum productivity of violet pigment, i.e. 0.12 g .L$\^$-1/H$\^$-1/, were obtained in a batch culture of pH 6, 20$^{\circ}C$, and 1 mg/L of dissolved oxygen concentration.

The protective effect of hypoxic therapy on paraquat-induced toxicity rat model (백서를 이용한 고독성 제초제 파라쿼트 중독 치료를 위한 저농도산소요법의 효과 연구)

  • Kim, Hoon;Min, Jin-Hong;Han, Kyu-Hong;Kang, Joon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2189-2198
    • /
    • 2014
  • Paraquat (PQ) is a very effective and widely used herbicide that was commercially introduced in 1962. In this study, instead of using antioxidants like in the past, to inhibit the formation of PQ-induced ROS, we attempted to reduce the oxygen concentration by using non-lethal hypoxia therapy. Therefore, we studied the toxicity of PQ in vivo, analyzed the major effects of ROS on the targeted lung tissue and compared the results with the gross histological changes after the cell protective effect of non-lethal hypoxia therapy. In vivo studies demonstrated that low-concentration oxygen therapy (i.e., 10-12% oxygen) in rats administered with PQ was associated with a higher survival rate than in rats that received only PQ. In vivo non-lethal hypoxia treatment showed better survival and less lung tissue damage. Using a hypoxic/anaerobic incubator with integrated multifaceted molecular analysis, including MDA assay, glutathione assay, and SOD assay, we established an optimal, significantly reduced in vivo non-lethal hypoxia treatment by exploiting the PQ-induced cytotoxicity responses.

The Patterns of Oxygen Consumption In Six Species of Marine Fish (해산어류 6종의 산소소비 경향에 관한 연구)

  • KIM Il-Nam;CHANG Young-Jin;KWON Joon-Yeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.373-381
    • /
    • 1995
  • Oxygen consumption of marine fishes according to different water temperatures, fish population densities and body weights was measured in the respiratory chamber for the following six species: the olive flounder Paralichthys olivaceus, the tiger puffer Takifugu rubripes, the rockfish Sebastes schlegeli, the sea bass Lateolabrax Japonicus, the red seabream Pagrus major and the black seabream Acanthopagrus schlegeli. Also the lethal concentration of dissolved oxygen in them was determined. Oxygen consumption in each fish species increased as the water temperature increased. The relationship between the oxygen consumption rate $(Oc,\;ml/kg{\cdot}\;hr)$ and the water temperature (T,$^{\circ}C$) for each species appeared as the following equations demonstrate; olive flounder: Oc=34.0515T-339.5987 $(r^2=0.9730)$, tiger puffer: Oc=34.4941T-479.8732 $(r^2=0.9483),$ rockfish: Oc=44.7970T-634.2627 $(r^2=0.9718),$ sea bass: Oc=26.1488T-318.0633 $(r^2=0.9316),$ red seabream: Oc=61.1020T-722.8926 $(r^2= 0.9805),$ black seabream: Oc=75.1460T-947.9370 $(r^2=0.9392).$ The of gen consumption of fish with different population densities decreased as the number of fish increased. As the body weight of the olive flounder increased, the mass-specific oxygen consumption decreased. The relationship between oxygen consumption and body weight (W; g) was expressed as Oc=2532.0268W-0.6565 $(r^2=0.9229)$. The levels of lethal dissolved oxygen in the olive flounder, rockfish, tiger puffer and red seabream were 0.66, 0.79, 0.75 and 1.36 m1/1, respectively.

  • PDF

Effect of EGF against Oxygen Radical-Induced Neurotoxicity in Cultured Spinal Dorsal Root Ganglion Neurons of Mouse (산소자유기에 의해 저해된 배양 척수감각 신경절 세포에 대한 상피세포성장인자의 영향)

  • Park, Seung-Taeck;Kim, Hyung-Ryong;Chae, Han-Jung
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 1997
  • In order to elucidate the cytotoxic effect of oxygen radicals on cultured spinal dorsal root ganglion(DRG) neurons derived from mouse. the neurotoxic effect of oxygen radicals w as examined after cultured DRG neurons were exposed to xanthine oxidase(XO) and hypoxanthine(HX)-oxygen radical generating system. In addition. neuroprotective effect of epidermal growth factor(EGF) against oxidant-induced neurotoxicity was also evaluated in these cultures. The results were, as follows: 1. Lethal concentration 50(LC$_{50}$) was 35mU/ml XO and 0.1mM HX in cultured DRG neurons. 2. Oxygen radicals induced the morphological changes such as the decrease of cell number and loss of neurites in these cultures. 3. EGF increased the cell viability and neurofilament in neurons damaged by oxygen radicals. From above the results, it is suggested that oxygen radicals have a cytotoxic effect on cultured DRG neurons of neonatal mouse and selective neurotrophic factors such as EGF are, effective, in blocking the neurotoxicity induced by oxygen radicals in cultured spinal DRG neurons.

  • PDF

Effect of Rhizoma Gastrodiae on Cultured Spinal Motor Neurons Damaged by Oxygen Radicals (천마가 산소자유기로 손상된 생쥐의 배양 척수 운동신경세포에 미치는 영향)

  • Son IL Hong;Lee Jung Hun;kim Sang Su;Lee Kang Chang;Lee Young Mi;Hong Gi Youn;Moon Hyung Bae;Seo Eun A;Han Du Seok;Shin Min Kyo;Song Ho Joan;Park Seung Taeck
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.262-266
    • /
    • 2002
  • In order to elucidate the mechanism of cytotoxic effect of oxygen radicals on cultured mouse spinal motor neurons, the neurotoxicity induced by hydrogen peroxide(H₂O₂) was evaluated by MTT assay. The neuroprotective effect of Rhizoma Gastrodiae(RG) against H₂O₂-mediated neurotoxicity was also examined in these cultures by SRB assay. The results were as follows : The value of lethal concentration 50(LC50) of H₂O₂ was estimated at a concentration of 30 uM in these cultures. Cell viability of cultured mouse spinal motor neurons was remarkably decreased by H₂O₂-induced neurotoxicity in a dose- and time-dependent manner. RG was remarkably effective in blocking the neurotoxicity induced by H₂O₂ at a concentration of 120 μM as determined by SRB assay. From above the results, it is suggested that H₂O₂ induce neurotoxicity, and the selective herbal extracted RG was very effective in blocking H₂O₂-mediated neurotoxicity on cultured mouse spinal motor neurons.

Survival, Oxygen Consumption and Stress Response of Parrotfish Oplegnathus fasciatus Exposed to Different Lower Temperature (돌돔(Oplegnathus fasciatus)의 생존, 산소소비 및 생리학적 반응에 미치는 저수온의 영향)

  • Shin, Yun Kyung;Choi, Young Jae;Kim, Won Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.725-732
    • /
    • 2020
  • The sudden drop of water temperature in winter is very threatening factor that affects the productivity of farmed fish and the management in aquafarm. In this study, we investigated the effect of low temperature on the survival, oxygen consumption and stress responses of parrotfish Oplegnathus fasciatus due to acute drop of water temperature. The survival rate of parrotfish Oplegnathus fasciatus was 5% at 6℃, 95% at 8℃ and 100% at 10℃ on the 4th day of exposure in each experimental temperature. Low-lethal temperature for 4days of parrotfish Oplegnathus fasciatus (4 day-LT50) was 6.99℃ (confidence limit, 6.55-7.42℃). Oxygen consumption rate was significantly decreased with decreasing water temperature. Temperature coefficient (Q10) was found to be 4.0 between 10℃ and 8℃ and 0.39 between 8℃ and 6℃. As a result of investigating the stress response according to the drop in water temperature, the concentration of SOD (Superoxide dismutase), cortisol, glucose, total Ig, AST (Aspartate) and ALT (Alanine aminotransferase) increased with decreasing of water temperature. This study would be useful for the management of temperature about cultured fish.