• Title/Summary/Keyword: lens mold

Search Result 190, Processing Time 0.031 seconds

Optical Properties of Aspheric Glass Lens using DLC Coated Molding Core (성형용 코어면 DLC 코팅에 의한 비구면 Glass렌즈 광학적 특성에 관한 연구)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Gil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho;Jeong, Sang-Hwa
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.362-366
    • /
    • 2007
  • In this research, the optimal grinding condition has been obtained by design of experiment (DOE) fur the development of aspheric lens for the 3 Mega Pixel, 2.5x optical zoom camera-phone module. Also, the tungsten carbide (WC) mold was processed by the method of ultra precision grinding under this optimal grinding condition. The influence of diamond-liked carbon (DLC) coating on form accuracy (PV) and surface roughness (Ra) of the mold was evaluated through measurements after DCL coating using ion plating on the ground mold. Also, aspheric glass lenses were molded, some before DLC coating of the mold and some after the DLC coating. The optical characteristics of each sample, molded by the different molds, were compared with each other.

Characteristics of aspheric lens processing using ultra-precision moulds processing system (초정밀 금형가공기를 이용한 비구면 렌즈 가공특성 연구)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The fabrication of precision optical components by deterministic CNC grinding is an area of great current interest. Replacement of the traditional, craftsman driven, optical fabrication process is essential to reduce costs and increase process flexibility and reliability. Moreover, CNC grinding is well suited to the fabrication of complex shapes such as aspheres, making it possible to design optical systems with fewer components and reduced weight. Current technology is capable of producing surfaces with less than 2 microns peak to valley error, 50 nm rms surface roughness, and less than 1 micron subsurface damage. Bound abrasive tools, in which the abrasive particles are fixed in a second (matrix) material, play an important part in achieving this performance. In this paper, the factors affecting the ultra-fine surface roughness and profile accuracy of machined surfaces of aspheric parts has been analyzed experimentally and theoretically and on ultra-precision aspheric grinding system and precise adjusting mechanism have been designed and manufactured. In the paper we report the results of experiments and modeling performed to examine the effects of machinability, occurring during grinding of optical surfaces, on the tool surface profile. Profiles of machined surface were measured by using SEM. In order to optimize grinding conditions of aspheric lens processing, we performed experiments by design of experiments.

  • PDF

Effects of Mold Precision in Micromini Cellphone Optical Systems (초소형 휴대폰 광학계의 금형 정밀도가 광학성능에 미치는 영향)

  • Ye, In-Soo;Cheong, Seon-Hwan;Choi, Seong-Dae;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.660-666
    • /
    • 2010
  • In cellphone optical systems, a tiny difference of manufacturing has a strong influence on camera lenses. This study aims to find out the worst result by tolerances come from all parts in optical performance. First, 3D Measure Instrument, Roundness Measure Instrument, and Wavelength Measure Instrument were used for greater precision by making and measuring the parts to see how different from the drawings. It was confirmed that even narrow tolerances could result in defects by assembling. Tolerances in assembly should be concerned as those in parts through the research.

Precision Surface Profiling of Lens Molds using a Non-contact Displacement Sensor (비접촉 변위센서를 이용한 초소형렌즈 정밀금형 형상측정)

  • Kang, Seung-Hoon;Jang, Dae-Yoon;Lee, Joohyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2020
  • In this study, we proposed a method for surface profiling aspheric lens molds using a precision displacement sensor with a spatial scanning mechanism. The precision displacement sensor is based on the confocal principle using a broadband light source, providing a 10 nm resolution over a 0.3 mm measurable range. The precision of the sensor, depending on surface slope, was evaluated via Allan deviation analysis. We then developed an automatic surface profiling system by measuring the cross-sectional profile of a lens mold. The precision of the sensor at the flat surface was 10 nm at 10 ms averaging time, while 200 ms averaging time was needed for identical precision at the steepest slope at 25 deg. When we compared the measurement result of the lens mold to a commercial surface profiler, we found that the accuracy of the developed system was less than 90 nm (in terms of 3 sigmas of error) between the two results.