• Title/Summary/Keyword: legal issues of AI data learning

Search Result 4, Processing Time 0.017 seconds

Legal Issues and Regulatory Discussions in Generative AI (생성형 AI의 법적 문제와 규제 논의 동향)

  • Kim, Beop-Yeon
    • Informatization Policy
    • /
    • v.31 no.3
    • /
    • pp.3-33
    • /
    • 2024
  • This paper summarizes the legal problems and issues raised in relation to generative AI. In addition, we looked at what regulatory discussions individual countries or international organizations have in order to solve or respond to these issues or to minimize the risks posed by generative AI. Infringement of individual basic rights raised by generative AI, the emergence and control of new crimes, monopolization of specific markets and environmental issues are mainly discussed, and although there are some differences in the necessity and direction of regulation, most countries seem to have similar views. Regarding AI, the issues that are currently being raised have been discussed continuously from the beginning of its appearance. Although certain issues have been discussed relatively much, there are some differences between countries, and situations that require consideration of phenomena different from the past are emerging. It seems that regulations and policies are being refined according to the situation of individual countries. In a situation where various issues are rapidly emerging and changing, measures to minimize the risk of AI and to enjoy the utility and benefits of AI through the use of safe AI should be sought. It will be necessary to continuously identify and analyze international trends and reorganize AI-related regulations and detailed policies suitable for Korea.

Ethical and Legal Implications of AI-based Human Resources Management (인공지능(AI) 기반 인사관리의 윤리적·법적 영향)

  • Jungwoo Lee;Jungsoo Lee;Ji Hun kwon;Minyi Cha;Kyu Tae Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.100-112
    • /
    • 2024
  • This study investigates the ethical and legal implications of utilizing artificial intelligence (AI) in human resource management, with a particular focus on AI interviews in the recruitment process. AI, defined as the capability of computer programs to perform tasks associated with human intelligence such as reasoning, learning, and adapting, is increasingly being integrated into HR practices. The deployment of AI in recruitment, specifically through AI-driven interviews, promises efficiency and objectivity but also raises significant ethical and legal concerns. These concerns include potential biases in AI algorithms, transparency in AI decision-making processes, data privacy issues, and compliance with existing labor laws and regulations. By analyzing case studies and reviewing relevant literature, this paper aims to provide a comprehensive understanding of these challenges and propose recommendations for ensuring ethical and legal compliance in AI-based HR practices. The findings suggest that while AI can enhance recruitment efficiency, it is imperative to establish robust ethical guidelines and legal frameworks to mitigate risks and ensure fair and transparent hiring practices.

Current Status and Future Direction of Artificial Intelligence in Healthcare and Medical Education (의료분야에서 인공지능 현황 및 의학교육의 방향)

  • Jung, Jin Sup
    • Korean Medical Education Review
    • /
    • v.22 no.2
    • /
    • pp.99-114
    • /
    • 2020
  • The rapid development of artificial intelligence (AI), including deep learning, has led to the development of technologies that may assist in the diagnosis and treatment of diseases, prediction of disease risk and prognosis, health index monitoring, drug development, and healthcare management and administration. However, in order for AI technology to improve the quality of medical care, technical problems and the efficacy of algorithms should be evaluated in real clinical environments rather than the environment in which algorithms are developed. Further consideration should be given to whether these models can improve the quality of medical care and clinical outcomes of patients. In addition, the development of regulatory systems to secure the safety of AI medical technology, the ethical and legal issues related to the proliferation of AI technology, and the impacts on the relationship with patients also need to be addressed. Systematic training of healthcare personnel is needed to enable adaption to the rapid changes in the healthcare environment. An overall review and revision of undergraduate medical curriculum is required to enable extraction of significant information from rapidly expanding medical information, data science literacy, empathy/compassion for patients, and communication among various healthcare providers. Specialized postgraduate AI education programs for each medical specialty are needed to develop proper utilization of AI models in clinical practice.

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.