• Title/Summary/Keyword: left ideals

Search Result 97, Processing Time 0.031 seconds

INTUITIONISTIC FUZZY SEMIPRIME IDEALS OF ORDERED SEMIGROUPS

  • Kim, Kyung Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.235-243
    • /
    • 2009
  • In this paper, we introduce the notion of intuitionistic fuzzy semiprimality in an ordered semigroup, which is an extension of fuzzy semiprimality and investigate some properties of intuitionistic fuzzification of the concept of several ideals.

  • PDF

ON RINGS WHOSE PRIME IDEALS ARE MAXIMAL

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.1-19
    • /
    • 2000
  • We investigate in this paper the maximality of prime ideals in rings whose simple singular left R-modules are p-injective.

  • PDF

On Rings Containing a Non-essential nil-Injective Maximal Left Ideal

  • Wei, Junchao;Qu, Yinchun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.179-188
    • /
    • 2012
  • We investigate in this paper rings containing a non-essential $nil$-injective maximal left ideal. We show that if R is a left MC2 ring containing a non-essential $nil$-injective maximal left ideal, then R is a left $nil$-injective ring. Using this result, some known results are extended.

COINCIDENCES OF DIFFERENT TYPES OF FUZZY IDEALS IN ORDERED Γ-SEMIGROUPS

  • Kanlaya, Arunothai;Iampan, Aiyared
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.367-381
    • /
    • 2014
  • The notion of ${\Gamma}$-semigroups was introduced by Sen in 1981 and that of fuzzy sets by Zadeh in 1965. Any semigroup can be reduced to a ${\Gamma}$-semigroup but a ${\Gamma}$-semigroup does not necessarily reduce to a semigroup. In this paper, we study the coincidences of fuzzy generalized bi-ideals, fuzzy bi-ideals, fuzzy interior ideals and fuzzy ideals in regular, left regular, right regular, intra-regular, semisimple ordered ${\Gamma}$-semigroups.

ON LEFT Γ-FILTERS OF Γ-po-SEMIGROUPS

  • Lee, S.K.;Kwon, Y.I.
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.77-81
    • /
    • 2009
  • We introduce the notions of a left(right) ${\Gamma}$-filter in a po-${\Gamma}$-semigroups and give a characterization of a left(right) ${\Gamma}$-filter of a po-${\Gamma}$-semigroups in term of right(left) prime ${\Gamma}$-ideals.

  • PDF

STRUCTURE OF UNIT-IFP RINGS

  • Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1257-1268
    • /
    • 2018
  • In this article we first investigate a sort of unit-IFP ring by which Antoine provides very useful information to ring theory in relation with the structure of coefficients of zero-dividing polynomials. Here we are concerned with the whole shape of units and nilpotent elements in such rings. Next we study the properties of unit-IFP rings through group actions of units on nonzero nilpotent elements. We prove that if R is a unit-IFP ring such that there are finite number of orbits under the left (resp., right) action of units on nonzero nilpotent elements, then R satisfies the descending chain condition for nil left (resp., right) ideals of R and the upper nilradical of R is nilpotent.

ALGEBRAS WITH PSEUDO-RIEMANNIAN BILINEAR FORMS

  • Chen, Zhiqi;Liang, Ke;Zhu, Fuhai
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • The purpose of this paper is to study pseudo-Riemannian algebras, which are algebras with pseudo-Riemannian non-degenerate symmetric bilinear forms. We nd that pseudo-Riemannian algebras whose left centers are isotropic play a curial role and show that the decomposition of pseudo-Riemannian algebras whose left centers are isotropic into indecomposable non-degenerate ideals is unique up to a special automorphism. Furthermore, if the left center equals the center, the orthogonal decomposition of any pseudo-Riemannian algebra into indecomposable non-degenerate ideals is unique up to an isometry.

ON LEFT DERIVATIONS OF BCH-ALGEBRAS

  • Kim, Kyung Ho;Lee, Yong Hoon
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.163-179
    • /
    • 2017
  • In this paper, we introduce the notion of left derivations of BCH algebras and investigate some properties of left derivations in a BCH-algebra. Moreover, we introduce the notions of fixed set and kernel set of derivations in a BCH-algebra and obtained some interesting properties in medial BCH-algebras. Also, we discuss the relations between ideals in a medial BCH-algebras.

On SF-Rings and Semisimple Rings

  • Lee, Kyoung Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 1994
  • In this note, we study conditions under which SF-rings are semi-simple. We prove that left SF-rings are semisimple for each of the following classes of rings: (1) left non-singular rings of finite rank; (2) rings whose maximal left ideals are finitely generated; (3) rings of pure global dimension zero and (4) rings which is pure-split. Also it is shown that left SF-rings without zero-divisors are semisimple.

  • PDF