• Title/Summary/Keyword: least square minimization

Search Result 40, Processing Time 0.025 seconds

A Study on the Cutting Pattern Determination for Fabric Structures (막 구조물의 재단 패턴 결정에 관한 연구)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.266-273
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions: (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, after shape finding analysis, cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

Actuator Fault Diagnostic Algorithm based on Hopfield Network

  • Park, Tae-Geon;Ryu, Ji-Su;Hur, Hak-Bom;Ahn, In-Mo;Lee, Kee-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.211-217
    • /
    • 2000
  • A main contribution of this paper is the development of a Hopfield network-based algorithm for the fault diagnosis of the actuators in linear system with uncertainties. An unknown input decoupling approach is introduced to the design of an adaptive observer so that the observer is insensitive to uncertainties. As a result, the output observation error equation does not depend on the effect of uncertainties. Simultaneous energy minimization by the Hopfield network is used to minimize the least mean square of errors of errors of estimates of output variables. The Hopfield network provides an estimate of the gains of the actuators. When the system dynamics changes, identified gains go through a transient period and this period is used to detect faults. The proposed scheme is demonstrated through its application to a simulated second-order system.

  • PDF

Planning of Streamflow Data Collection Network by Regionalized Regression Model (지역화회귀모형을 이용한 유량관측망의 계측)

  • 조국광;권순국
    • Water for future
    • /
    • v.23 no.1
    • /
    • pp.109-118
    • /
    • 1990
  • In this study, the effectiveness of existing streamflow data collection networks in the Han and the Nakdong River Basin is evaluated for various gaging plans of 5, 10, 15 and 20years planning horizons by the nonlinear integer programming method, and also a technique for adjustment and planning of the existing network is provided for the purpose of increasing the efficiency of the network in terms of ecomony. The objective function is minimization of the average sampling mean square error of regional regression model with regression parameters estimated by generalized least squares method.

  • PDF

Nonlinear Finite Element Model for Tidal Analysis(I) -Model Development- (조석유동 해석을 위한 비선형 유한요소모형(I) -모형의 개발-)

  • 나정우;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.144-154
    • /
    • 1994
  • An efficient tidal model, TIDE which is an iterative type, nonlinear finite element model has developed for the analysis of the tidal movement in the coastal area which is characterized by irregular boundaries and bottom topography. Traditional time domain finite element models have been in difficulties with requirement for high eddy viscosity coefficients and small time steps to insure numerical instability. These problems are overcome by operating in the frequency domain with an elaborate grid system by combining the triangular and quadrilateral shape grids. Furthermore, in order to handle non-linearity which will be more significant in the shallow region, an iterative scheme with least square error minimization algorithm has been implemented in the model. The results of TIDE model are agreed with the analytical solutions in a rectangular channel under the condition of tidal waves entering the channel closed at one end.

  • PDF

Geometric Fitting of Parametric Curves and Surfaces

  • Ahn, Sung-Joon
    • Journal of Information Processing Systems
    • /
    • v.4 no.4
    • /
    • pp.153-158
    • /
    • 2008
  • This paper deals with the geometric fitting algorithms for parametric curves and surfaces in 2-D/3-D space, which estimate the curve/surface parameters by minimizing the square sum of the shortest distances between the curve/surface and the given points. We identify three algorithmic approaches for solving the nonlinear problem of geometric fitting. As their general implementation we describe a new algorithm for geometric fitting of parametric curves and surfaces. The curve/surface parameters are estimated in terms of form, position, and rotation parameters. We test and evaluate the performances of the algorithms with fitting examples.

Reconstruction of High-Resolution Facial Image Based on A Recursive Error Back-Projection

  • Park, Joeng-Seon;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.715-717
    • /
    • 2004
  • This paper proposes a new reconstruction method of high-resolution facial image from a low-resolution facial image based on a recursive error back-projection of top-down machine learning. A face is represented by a linear combination of prototypes of shape and texture. With the shape and texture information about the pixels in a given low-resolution facial image, we can estimate optimal coefficients for a linear combination of prototypes of shape and those of texture by solving least square minimization. Then high-resolution facial image can be obtained by using the optimal coefficients for linear combination of the high-resolution prototypes, In addition to, a recursive error back-projection is applied to improve the accuracy of synthesized high-resolution facial image. The encouraging results of the proposed method show that our method can be used to improve the performance of the face recognition by applying our method to reconstruct high-resolution facial images from low-resolution one captured at a distance.

  • PDF

Chip stack height measurement of semiconductor using slit beam (슬릿빔을 이용한 반도체의 칩 적층 높이 측정)

  • Shin, Gyun-Seob;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.422-424
    • /
    • 2009
  • In this paper, we studied methods that measure chip stack height using slit beam in mold equipment among semiconductor manufacture equipments. We studied two methods to improve chip stack height measurement performance. First, it is relation of camera exposure time and height measurement repeatability. Second we could improve measurement performance applying method of least mean square method for measurement error minimization about PCB(Printed Circuit Board) flexure phenomenon.

  • PDF

Analysis System for Practical Dynamic Load with Hybrid Method under Random Frequency Vibration (불규칙 가진시 하이브리드기법을 이용한 실동하중 해석시스템)

  • Song, Joon-Hyuk;Yang, Sung-Mo;Kang, Hee-Yong;Yu, Hyo-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.33-38
    • /
    • 2008
  • Most structures of vehicle are composed of many substructures connected to one another by various types of mechanical joints. In vehicle engineering, it is important to study these jointed structures under random frequency vibration for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions in a jointed structure because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the hybrid method of practical dynamic load determination is developed by the combination of the principal stresses from F. E. Analysis and test of a jointed structure. Least square pseudo inverse matrix is adopted to obtain an inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these errors. Finally, to verify the proposed system, a heavy-duty bus is analyzed. This measurement and prediction technology can be extended to the different jointed structures.

1-Point Ransac Based Robust Visual Odometry

  • Nguyen, Van Cuong;Heo, Moon Beom;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.81-89
    • /
    • 2013
  • Many of the current visual odometry algorithms suffer from some extreme limitations such as requiring a high amount of computation time, complex algorithms, and not working in urban environments. In this paper, we present an approach that can solve all the above problems using a single camera. Using a planar motion assumption and Ackermann's principle of motion, we construct the vehicle's motion model as a circular planar motion (2DOF). Then, we adopt a 1-point method to improve the Ransac algorithm and the relative motion estimation. In the Ransac algorithm, we use a 1-point method to generate the hypothesis and then adopt the Levenberg-Marquardt method to minimize the geometric error function and verify inliers. In motion estimation, we combine the 1-point method with a simple least-square minimization solution to handle cases in which only a few feature points are present. The 1-point method is the key to speed up our visual odometry application to real-time systems. Finally, a Bundle Adjustment algorithm is adopted to refine the pose estimation. The results on real datasets in urban dynamic environments demonstrate the effectiveness of our proposed algorithm.

Detection of Second-Layer Corrosion in Aging Aircraft

  • Kim, Noh-Yu;Yang, Seun-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.591-602
    • /
    • 2009
  • The Compton backscatter technique has been applied to lap-joint in aircraft structure in order to determine mass loss due to exfoliative corrosion of the aluminum alloy sheet skin. The mass loss of each layer has been estimated from Compton backscatter A-scan including the aluminum sheet, the corrosion layer, and the sealant. A Compton backscattering imaging system has been also developed to obtain a cross-sectional profile of corroded lap-splices of aging aircraft using a specially designed slit-type camera. The camera is to focus on a small scattering volume inside the material from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the layered structure is scanned by moving the scattering volume through the thickness direction of the specimen. The theoretical model of the Compton scattering based on Boltzmann transport theory is presented for quantitative characterization of exfoliative corrosion through deconvolution procedure using a nonlinear least-square error minimization method. It produces practical information such as location and width of planar corrosion in layered structures of aircraft, which generally cannot be detected by conventional NDE techniques such as the ultrasonic method.