• Title/Summary/Keyword: learning transfer

검색결과 757건 처리시간 0.025초

전이학습 기법을 이용한 철도교량의 동적응답 예측 (Predicting Dynamic Response of a Railway Bridge Using Transfer-Learning Technique)

  • 김민수;최상현
    • 한국전산구조공학회논문집
    • /
    • 제36권1호
    • /
    • pp.39-48
    • /
    • 2023
  • 철도교량의 설계는 장기간에 걸쳐 수행되고 대규모의 부지를 대상으로 하기 때문에 다양한 환경적인 요인과 불확실성을 동반하게 된다. 이러한 연유로 초기 설계단계에서 충분히 검토하였더라도 설계변경이 종종 발생하고 있다. 특히 철도교량과 같은 대규모 시설물의 설계변경은 많은 시간과 인력을 소모하며, 매번 모든 절차를 반복하는 것은 매우 비효율적이다. 본 연구에서는 딥러닝 알고리즘 중 전이학습을 통해 설계변경 전의 학습 결과를 활용하여 설계변경 후의 학습의 효율성을 향상시킬 수 있는 기법을 제안하였다. 분석을 위해 기개발한 철도교량 딥러닝 기반 예측 시스템을 활용하여 시나리오들을 작성하고 데이터베이스를 구축하였다. 제안된 기법은 설계변경 전 기존 도메인에서 학습에 사용한 8,000개의 학습데이터 대비 새로운 도메인에서 1,000개의 데이터만을 학습하여 유사한 정확도를 나타내었고 보다 빠른 수렴속도를 가지는 것을 확인하였다.

재난관리 교육훈련의 전이효과에 영향을 미치는 요인분석 - 경기도 소방공무원 인식을 중심으로 - (Analysis of Factors Affecting Transfer Effect of Education and Training of Disaster Management - Focused on the Perceptions of Fire Officials -)

  • 채진
    • 한국화재소방학회논문지
    • /
    • 제30권3호
    • /
    • pp.117-123
    • /
    • 2016
  • 본 연구는 재난관리 교육훈련의 전이효과에 대한 충분한 연구가 이루어지지 못하고 있다는 문제 제기 하에 교육훈련의 전이에 영향을 미치는 요인들을 경기도 소방공무원들의 인식을 토대로 실증적으로 규명하고자 한다. 연구목적 달성을 위해 본 연구는 국내 외의 선행연구 검토를 통해 교육훈련의 전이에 영향을 미치는 요인들을 도출하여 이러한 요인들이 실제로 소방공무원들의 교육훈련 전이에 영향을 미치고 있는지를 실증적으로 규명하는데 그 목적이 있다. 연구의 결과, 교육훈련 전이효과에 대한 영향을 미치는 정도에 유의미한 변수는 업무관련성, 학습문화, 동료지원, 자기 효능감, 학습동기, 학습능력, 교육방법 순으로 교육훈련 전이효과에 영향력이 있는 변수로 나타났다.

Knowledge Transfer Using User-Generated Data within Real-Time Cloud Services

  • Zhang, Jing;Pan, Jianhan;Cai, Zhicheng;Li, Min;Cui, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.77-92
    • /
    • 2020
  • When automatic speech recognition (ASR) is provided as a cloud service, it is easy to collect voice and application domain data from users. Harnessing these data will facilitate the provision of more personalized services. In this paper, we demonstrate our transfer learning-based knowledge service that built with the user-generated data collected through our novel system that deliveries personalized ASR service. First, we discuss the motivation, challenges, and prospects of building up such a knowledge-based service-oriented system. Second, we present a Quadruple Transfer Learning (QTL) method that can learn a classification model from a source domain and transfer it to a target domain. Third, we provide an overview architecture of our novel system that collects voice data from mobile users, labels the data via crowdsourcing, utilises these collected user-generated data to train different machine learning models, and delivers the personalised real-time cloud services. Finally, we use the E-Book data collected from our system to train classification models and apply them in the smart TV domain, and the experimental results show that our QTL method is effective in two classification tasks, which confirms that the knowledge transfer provides a value-added service for the upper-layer mobile applications in different domains.

간호학생의 학습 자기효능감과 핵심기본간호술 수행자신감, 중요성 인식 및 전이동기의 관계 (Correlations among Learning Self-efficacy, Confidence in Performance, Perception of Importance and Transfer Intention for Core Basic Nursing Skill in Nursing Students at a Nursing University)

  • 김선희;최자윤;권영란
    • 한국콘텐츠학회논문지
    • /
    • 제17권9호
    • /
    • pp.661-671
    • /
    • 2017
  • 본 연구는 간호학생의 학습 자기효능감과 핵심기본간호술에 대한 수행자신감, 중요성 인식 및 전이동기의 정도와 변수들 간의 상관관계를 확인하기 위한 서술적 조사연구이다. 연구대상은 일 간호대학에서 총 6학점의 기본간호학과 1학점의 임상입문실습 교과목을 이수한 2학년 학생이며, 자기보고식 설문지를 이용해 자료를 수집하였다. 수집된 자료는 SPSS 21.0 program을 이용하여 분석하였다. 연구결과, 간호학생의 핵심기본간호술에 대한 중요성 인식은 매우 높은 수준, 학습 자기효능감과 전이동기는 높은 수준, 수행자신감은 보통 수준인 것으로 나타났으며, 전이동기는 학습 자기효능감(r=.49, p<.001), 수행자신감(r=.30, p=.006) 및 중요성 인식(r=.31, p=.005)과 양의 상관관계를 보였다. 본 연구결과를 토대로 간호학생의 전이동기를 고취시키기 위한 효과적인 교육프로그램 개발을 위해 전이동기와 관련 변인 간의 인과관계를 검증하기 위한 추후 연구가 필요하다.

유방암 조기 진단을 위한 초음파 영상의 다단계 전이 학습 (Multistage Transfer Learning for Breast Cancer Early Diagnosis via Ultrasound)

  • 겔란 아야나;박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.134-136
    • /
    • 2021
  • 인공지능 알고리즘을 이용한 유방암의 조기진단에 관련된 연구는 최근들어 활발하게 진행되고 있다. 이는 연구용으로 공개된 초음파 유방 이미지를 활용하여 다양하게 개발되고 있으나, 사용자의 목적에 맞는 처리 속도 및 정확도 등에 다양한 한계점을 보인다. 이러한 문제를 해결하기 위해, 본 논문에서는 ImageNet에서 학습된 ResNet 모델을 현미경 기반 암세포 이미지에서 활용이 가능한 다단계 전이 학습을 제안하고, 이를 다시 전이 학습하여 초음파 유방암 영상을 양성 및 악성으로 분류하는 실험을 진행하였다. 실험을 위한 영상은 양성과 악성이 포함된 250장의 유방암 초음파 영상과 27,200장의 암 세포주 영상으로 구성되었다. 제안된 다단계 전이 학습 알고리즘은 초음파 유방암 영상을 분류하였을 때 96% 이상의 정확도를 보였으며, 향후 암 세포주 및 실시간 영상처리 등의 추가를 통해 보다 높은 활용도와 정확도를 보일 것으로 기대한다.

  • PDF

컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식 (Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning)

  • 강은철;한영태;오일석
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제24권1호
    • /
    • pp.53-57
    • /
    • 2018
  • 독버섯 중독 사건이 종종 발생한다. 본 논문은 딥러닝 기술을 활용한 버섯 인식 시스템을 제안한다. 딥러닝 기법 중 하나인 컨볼루션 신경망을 사용하였다. 컨볼루션 신경망을 학습하기 위해 이미지 크롤링을 이용하여 38종의 버섯에 대해 1478장의 영상을 수집하였다. 수집한 데이터셋을 가지고 AlexNet, VGGNet, GoogLeNet을 비교 실험하였으며, 클래스 수 확장에 따른 비교 실험, 전이 학습을 사용한 비교실험을 하였다. 실험 결과 1순위 정확도는 82.63%, 5순위 정확도는 96.84%라는 성능을 얻었다.

악성코드 이미지화와 전이학습을 이용한 악성코드 분류 기법 (Malware Classification Method using Malware Visualization and Transfer Learning)

  • 이종관;이민우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.555-556
    • /
    • 2021
  • 본 논문은 악성코드의 이미지화와 전이학습을 이용한 악성코드 분류 방안을 제안한다. 공개된 악성코드는 쉽게 재사용 또는 변형이 가능하다. 그런데 전통적인 악성코드 탐지 기법은 변형된 악성코드를 탐지하는데 취약하다. 동일한 부류에 속하는 악성코드들은 서로 유사한 이미지로 변환된다. 따라서 제안하는 기법은 악성코드를 이미지화하고 이미지 분류 분야에서 검증된 딥러닝 모델을 사용하여 악성코드의 부류를 분류한다. Malimg 데이터셋에 대해 VGG-16 모델을 이용하여 실험한 결과 98% 이상의 분류 정확도를 나타냈다.

  • PDF

Transfer Learning Models for Enhanced Prediction of Cracked Tires

  • Candra Zonyfar;Taek Lee;Jung-Been Lee;Jeong-Dong Kim
    • Journal of Platform Technology
    • /
    • 제11권6호
    • /
    • pp.13-20
    • /
    • 2023
  • Regularly inspecting vehicle tires' condition is imperative for driving safety and comfort. Poorly maintained tires can pose fatal risks, leading to accidents. Unfortunately, manual tire visual inspections are often considered no less laborious than employing an automatic tire inspection system. Nevertheless, an automated tire inspection method can significantly enhance driver compliance and awareness, encouraging routine checks. Therefore, there is an urgency for automated tire inspection solutions. Here, we focus on developing a deep learning (DL) model to predict cracked tires. The main idea of this study is to demonstrate the comparative analysis of DenseNet121, VGG-19 and EfficientNet Convolution Neural Network-based (CNN) Transfer Learning (TL) and suggest which model is more recommended for cracked tire classification tasks. To measure the model's effectiveness, we experimented using a publicly accessible dataset of 1028 images categorized into two classes. Our experimental results obtain good performance in terms of accuracy, with 0.9515. This shows that the model is reliable even though it works on a dataset of tire images which are characterized by homogeneous color intensity.

  • PDF

Simulation combined transfer learning model for missing data recovery of nonstationary wind speed

  • Qiushuang Lin;Xuming Bao;Ying Lei;Chunxiang Li
    • Wind and Structures
    • /
    • 제37권5호
    • /
    • pp.383-397
    • /
    • 2023
  • In the Structural Health Monitoring (SHM) system of civil engineering, data missing inevitably occurs during the data acquisition and transmission process, which brings great difficulties to data analysis and poses challenges to structural health monitoring. In this paper, Convolution Neural Network (CNN) is used to recover the nonstationary wind speed data missing randomly at sampling points. Given the technical constraints and financial implications, field monitoring data samples are often insufficient to train a deep learning model for the task at hand. Thus, simulation combined transfer learning strategy is proposed to address issues of overfitting and instability of the deep learning model caused by the paucity of training samples. According to a portion of target data samples, a substantial quantity of simulated data consistent with the characteristics of target data can be obtained by nonstationary wind-field simulation and are subsequently deployed for training an auxiliary CNN model. Afterwards, parameters of the pretrained auxiliary model are transferred to the target model as initial parameters, greatly enhancing training efficiency for the target task. Simulation synergy strategy effectively promotes the accuracy and stability of the target model to a great extent. Finally, the structural dynamic response analysis verifies the efficiency of the simulation synergy strategy.

YOLO 네트워크를 활용한 전이학습 기반 객체 탐지 알고리즘 (Transfer Learning-based Object Detection Algorithm Using YOLO Network)

  • 이동구;선영규;김수현;심이삭;이계산;송명남;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.219-223
    • /
    • 2020
  • 딥 러닝 기반 객체 탐지 및 영상처리 분야에서 모델의 인식률과 정확도를 보장하기 위해 다량의 데이터 확보는 필수적이다. 본 논문에서는 학습데이터가 적은 경우에도 인공지능 모델의 높은 성능을 도출하기 위해 전이학습 기반 객체탐지 알고리즘을 제안한다. 본 논문에서는 객체탐지를 위해 사전 학습된 Resnet-50 네트워크와 YOLO(You Only Look Once) 네트워크를 결합한 전이학습 네트워크를 구성하였다. 구성된 전이학습 네트워크는 Leeds Sports Pose 데이터셋의 일부를 활용하여 이미지에서 가장 넓은 영역을 차지하고 있는 사람을 탐지하는 네트워크로 학습을 진행하였다. 실험결과는 탐지율 84%, 탐지 정확도 97%를 기록하였다.