최근 증강현실(Augmented Reality)에 대한 관심이 증대되고, 이와 관련된 기술들이 발전함에 따라서 증강현실이 다양한 분야에 적용하려는 시도가 늘어나고 이에 대한 활용에도 기대가 모아지고 있다. 본 논문에서는 높은 해상도의 모델파일을 지원하고 보다 높은 증강현실을 위한 기술지원을 하는 Goblin XNA 기반으로 시스템을 구현하였다. 마커의 개수, 위치 및 카메라와의 거리 변화에 따른 모델 출력의 관계를 실험을 통해서 확인하였으며, 이를 바탕으로 유아용 학습 콘텐츠를 제작하고 구현하였다. 구현한 콘텐츠에서 각 페이지에 있는 마커에 유아에게 친숙한 캐릭터를 띄우므로 집중력을 높임과 동시에 학습보조자가 원활하게 콘텐츠를 사용할 수 있도록 하였다. 또한 콘텐츠의 페이지마다 3개의 마커를 두어 일부분이 장애물에 의해 가려지더라도 원활한 인식을 할 수 있도록 하였다. 그리고 내용에 맞게 3D 모델이 증강되는 동시에 사운드가 재생되도록 하여 학습에서의 현존감과 몰입을 높여 학습효과를 극대화하도록 하였다.
본 연구는 코로나19로 인한 대학의 원격수업이 장기화하고 교수자와 학습자의 어려움이 계속됨에 따라, 여러 기술이 결합 된 기술융합 부문 공업계 대학 교수자와 학습자의 인식 파악을 통하여 개선 방안을 도출하고자 하였다. 이를 위해 2020학년도 2학기 종료 시기에 자동차 계열 교수와 학생들을 대상으로 온라인 설문조사를 실시하였다. 설문조사 분석 결과, 교수와 학생은 온라인 수업의 장점 측면에 대해서는 시공간의 자유로움, 반복 학습 가능, 재활용 등 유사한 인식을 하는 것으로 나타났다. 애로사항 측면에서는 학생은 현장감 부족으로 학습몰입 떨어짐을, 교수와 학생 모두는 상호작용의 어려움을 상대적으로 크게 느끼는 것으로 나타났다. 본 연구는 기복이 있는 코로나 상황과 코로나 이후 공업계 대학의 온라인 교육에 대하여 대학 정책지원에 관한 제언과 기본자료를 마련한다는 의의가 있다.
As online learning continues to be extended, many engineering colleges are engaged in online learning activities. One of the core competencies required of engineering students in a knowledge-convergence society is communication skills. Online discussion activities are frequently used in educational field to improve communication skills. Efforts are being made to provide visual dashboards in online discussion activity systems to more effectively support online discussion activities. However there is less qualitative studies on students' experience in discussion activities. The purpose of this study is to explore the experience of engineering students participating in discussion activities using online discussion systems and visual dashboards. We interviewed 15 students who participated in online discussion activities to achieve their research objectives about their experience in utilizing the online discussion system, their perception of visual dashboards, and their experience in discussion activities. As a result of the study, students' perception of the use of the online discussion activity system, the visual dashboard, and the perception of a sense of social presence were understood. To be more effective in providing tool support, such as discussion activity systems and visual dashboards in online discussion activities, instructors need to understand the nature of learners' online discussion activities.
Excessive presence of As level in groundwater is a major health problem worldwide. In the Red River Delta in Vietnam, several million residents possess a high risk of chronic As poisoning. The As releases into groundwater caused by natural process through microbially-driven reductive dissolution of Fe (III) oxides. It has been extracted by Red River residents using private tube wells for drinking and daily purposes because of their unawareness of the contamination. This long-term consumption of As-contaminated groundwater could lead to various health problems. Therefore, a predictive model would be useful to expose contamination risks of the wells in the Red River Delta Vietnam area. This study used four machine learning algorithms to predict the As probability of study sites in Red River Delta, Vietnam. The GBM was the best performing model with the accuracy, precision, sensitivity, and specificity of 98.7%, 100%, 95.2%, and 100%, respectively. In addition, it resulted the highest AUC of 92% and 96% for the PRC and ROC curves, with Eh and Fe as the most important variables. The partial dependence plot of As concentration on the model parameters showed that the probability of high level of As is related to the low number of wells' depth, Eh, and SO4, along with high PO43- and NH4+. This condition triggers the reductive dissolution of iron phases, thus releasing As into groundwater.
International Journal of Computer Science & Network Security
/
제22권1호
/
pp.105-112
/
2022
The development and spread of IT-technologies has raised interest in teaching programming pupils. The article deals with problems related to programming and ways to overcome them. The importance of programming skills is emphasized, as this process promotes the formation of algorithmic thinking of pupils. The authors determined the level of pupils' interest to programing learning depending on the age. The analysis has showed that the natural interest of younger pupils in programming is decreasing over the years and in the most productive period of its study is minimized. It is revealed that senior school pupils are characterized by low level of interest in the study of programming; lack of motivation; the presence of psychological blocks on their own abilities in the context of programming; law level of computer science understanding. To overcome these problems, we conducted the second stage of the experiment, which was based on a change in the approach to programing learning, which involved pupils of non-specialized classes of senior school (experimental group). During the study of programming, special attention was paid to the motivational and psychological component, as well as the use of game technologies and teamwork of pupils. The results of the pedagogical experiment on studying the effectiveness of teaching programming for pupils of nonspecialized classes are presented. Improvement of the results provided the use of social and cognitive motives; application of verbal and non-verbal, external and internal means; communicative attacks; stimulation and psychological setting; game techniques, independent work and reflection, teamwork. The positive effect of the implemented methods is shown by the results verified by the methods of mathematical statistics in the experimental and control groups of pupils.
매년 교통사고의 가장 큰 원인으로 손꼽히는 졸음운전은 운전자의 수면 부족, 산소 부족, 긴장감의 저하, 신체의 피로 등과 같은 다양한 요인을 동반한다. 졸음 유무를 확인하는 일반적인 방법으로 운전자의 표정과 주행패턴을 파악하는 방법, 심전도, 산소포화도, 뇌파와 같은 생체신호를 분석하는 방법들이 연구되고 있다. 본 논문은 영상을 검출하는 딥러닝 모델과 생체 신호 측정 기술을 이용한 운전자 피로 감지 시스템을 제안한다. 제안 방법은 일차적으로 딥러닝을 이용하여 운전자의 눈 모양과 하품 유무, 졸음으로 예상되는 신체 동작을 파악하여 졸음 상태를 감지한다. 이차적으로 맥파 신호와 체온을 이용하여 운전자의 피로 상태를 파악하여 시스템의 정확도를 높이도록 설계하였다. 실험 결과, 실시간 영상에서 운전자의 졸음 유무 판별이 안정적으로 가능하였으며 각성상태와 졸음 상태에서의 분당 심박수와 체온을 비교하여 본 연구의 타당성을 확인할 수 있었다.
본 연구에서는 전통 유기 주조 시 발생하는 미충전 결함을 방지하기 위하여, 주조 공정 조건 선택 방안을 제시하고자 한다. 공정 조건에 따라 발생하는 결함 유무를 학습하여 어떠한 공정 조건이 주어질 때, 결함 발생 여부를 예측하는 인공지능 모델을 개발하고 검증하였다. 이를 응용하여 적합한 공정 조건을 결정하였고, 추가적인 시뮬레이션의 결과를 상호 비교하여 결정된 조건을 검증하였다. 이를 통해 원하는 사형 모델에서 결함을 방지할 수 있는 주조 공정 조건을 결정할 수 있다. 이와 같은 기계학습 및 전통기술 표준화를 통해 향후 전통 유기의 스마트 공방화에 기여할 수 있을 것으로 판단된다.
Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.
Stomach cancer has a high annual mortality rate worldwide necessitating early detection and accurate treatment. Even experienced specialists can make erroneous judgments based on several factors. Artificial intelligence (AI) technologies are being developed rapidly to assist in this field. Here, we aimed to determine how AI technology is used in gastric cancer diagnosis and analyze how it helps patients and surgeons. Early detection and correct treatment of early gastric cancer (EGC) can greatly increase survival rates. To determine this, it is important to accurately determine the diagnosis and depth of the lesion and the presence or absence of metastasis to the lymph nodes, and suggest an appropriate treatment method. The deep learning algorithm, which has learned gastric lesion endoscopyimages, morphological characteristics, and patient clinical information, detects gastric lesions with high accuracy, sensitivity, and specificity, and predicts morphological characteristics. Through this, AI assists the judgment of specialists to help select the correct treatment method among endoscopic procedures and radical resections and helps to predict the resection margins of lesions. Additionally, AI technology has increased the diagnostic rate of both relatively inexperienced and skilled endoscopic diagnosticians. However, there were limitations in the data used for learning, such as the amount of quantitatively insufficient data, retrospective study design, single-center design, and cases of non-various lesions. Nevertheless, this assisted endoscopic diagnosis technology that incorporates deep learning technology is sufficiently practical and future-oriented and can play an important role in suggesting accurate treatment plans to surgeons for resection of lesions in the treatment of EGC.
본 연구에서는 충청남도를 중심으로 로드킬 발생을 예측하고 영향을 미치는 요인을 탐구하여 로드킬 예방 대책 수립에 이바지하고자 하였다. 날씨, 도로 및 환경 정보를 종합적으로 고려하여 기계학습을 기반으로 로드킬 발생을 예측하고 각 변수의 중요성을 분석하여 주요 영향 요인을 도출하였다. 가장 우수한 성능을 보인 Gradient Boosting Machine(GBM)은 정확도 92.0%, 재현율 84.6%, F1-score 89.2%, AUC 0.907을 기록했다. 로드킬에 영향을 미치는 주요 요인은 평균 지역 기압(hPa), 평균 지면 온도(℃), 월, 평균 이슬점 온도(℃), 중앙 분리대 존재 여부, 평균 풍속(m/s)이었다. 이러한 결과는 로드킬 예방 및 교통안전에 이바지할 것으로 기대되며, 생태계와 도로 개발 간의 균형 유지에 중요한 역할을 할 것으로 예상한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.