References
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209-249. https://doi.org/10.3322/caac.21660
- Lee HA, Lee TY, Kim YR. Comparative analysis of stomach cancer stages and related factors according to the diagnosis path. J Korea Acad Ind Coop Soc 2015;16:2656-2664.
- Jung DH. Endoscopic resection of early gastric cancer in elderly. Korean J Gastroenterol 2022;80:1-5. https://doi.org/10.4166/kjg.2022.084
- Hamashima C, Okamoto M, Shabana M, Osaki Y, Kishimoto T. Sensitivity of endoscopic screening for gastric cancer by the incidence method. Int J Cancer 2013;133:653-659. https://doi.org/10.1002/ijc.28065
- Ren W, Yu J, Zhang ZM, Song YK, Li YH, Wang L. Missed diagnosis of early gastric cancer or high-grade intraepithelial neoplasia. World J Gastroenterol 2013;19:2092-2096. https://doi.org/10.3748/wjg.v19.i13.2092
- Yao K. The endoscopic diagnosis of early gastric cancer. Ann Gastroenterol 2013;26:11-22.
- Pimenta-Melo AR, Monteiro-Soares M, Libanio D, Dinis-Ribeiro M. Missing rate for gastric cancer during upper gastrointestinal endoscopy: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2016;28:1041-1049. https://doi.org/10.1097/MEG.0000000000000657
- Zhang YH, Guo LJ, Yuan XL, Hu B. Artificial intelligence-assisted esophageal cancer management: now and future. World J Gastroenterol 2020;26:5256-5271. https://doi.org/10.3748/wjg.v26.i35.5256
- Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med 2018;284:603-619. https://doi.org/10.1111/joim.12822
- Albelwi S, Mahmood A. A framework for designing the architectures of deep convolutional neural networks. Entropy (Basel) 2017;19:242.
- Miyaki R, Yoshida S, Tanaka S, Kominami Y, Sanomura Y, Matsuo T, et al. A computer system to be used with laser-based endoscopy for quantitative diagnosis of early gastric cancer. J Clin Gastroenterol 2015;49:108-115. https://doi.org/10.1097/MCG.0000000000000104
- Cho BJ, Bang CS, Park SW, Yang YJ, Seo SI, Lim H, et al. Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network. Endoscopy 2019;51:1121-1129. https://doi.org/10.1055/a-0981-6133
- Ikenoyama Y, Hirasawa T, Ishioka M, Namikawa K, Yoshimizu S, Horiuchi Y, et al. Detecting early gastric cancer: comparison between the diagnostic ability of convolutional neural networks and endoscopists. Dig Endosc 2021;33:141-150. https://doi.org/10.1111/den.13688
- Ishioka M, Osawa H, Hirasawa T, Kawachi H, Nakano K, Fukushima N, et al. Performance of an artificial intelligence-based diagnostic support tool for early gastric cancers: Retrospective study. Dig Endosc 2023;35:483-491. https://doi.org/10.1111/den.14455
- Lui TK, Wong KK, Mak LL, To EW, Tsui VW, Deng Z, et al. Feedback from artificial intelligence improved the learning of junior endoscopists on histology prediction of gastric lesions. Endosc Int Open 2020;8:E139-E146. https://doi.org/10.1055/a-1036-6114
- Ono H, Yao K, Fujishiro M, Oda I, Uedo N, Nimura S, et al. Guidelines for endoscopic submucosal dissection and endoscopic mucosal resection for early gastric cancer (second edition). Dig Endosc 2021;33:4-20. https://doi.org/10.1111/den.13883
- Messmann H, Bisschops R, Antonelli G, Libanio D, Sinonquel P, Abdelrahim M, et al. Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022;54:1211-1231. https://doi.org/10.1055/a-1950-5694
- An P, Yang D, Wang J, Wu L, Zhou J, Zeng Z, et al. A deep learning method for delineating early gastric cancer resection margin under chromoendoscopy and white light endoscopy. Gastric Cancer 2020;23:884-892. https://doi.org/10.1007/s10120-020-01071-7
- Ling T, Wu L, Fu Y, Xu Q, An P, Zhang J, et al. A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy. Endoscopy 2021;53:469-477. https://doi.org/10.1055/a-1229-0920
- Liu L, Dong Z, Cheng J, Bu X, Qiu K, Yang C, et al. Diagnosis and segmentation effect of the ME-NBI-based deep learning model on gastric neoplasms in patients with suspected superficial lesions - a multicenter study. Front Oncol 2023;12:1075578.
- Hu H, Gong L, Dong D, Zhu L, Wang M, He J, et al. Identifying early gastric cancer under magnifying narrow-band images with deep learning: a multicenter study. Gastrointest Endosc 2021;93:1333-1341.e3. https://doi.org/10.1016/j.gie.2020.11.014
- Nagao S, Tsuji Y, Sakaguchi Y, Takahashi Y, Minatsuki C, Niimi K, et al. Highly accurate artificial intelligence systems to predict the invasion depth of gastric cancer: efficacy of conventional white-light imaging, nonmagnifying narrow-band imaging, and indigo-carmine dye contrast imaging. Gastrointest Endosc 2020;92:866-873.e1. https://doi.org/10.1016/j.gie.2020.06.047
- Zhu Y, Wang QC, Xu MD, Zhang Z, Cheng J, Zhong YS, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest Endosc 2019;89:806-815.e1. https://doi.org/10.1016/j.gie.2018.11.011
- Nam JY, Chung HJ, Choi KS, Lee H, Kim TJ, Soh H, et al. Deep learning model for diagnosing gastric mucosal lesions using endoscopic images: development, validation, and method comparison. Gastrointest Endosc 2022;95:258-268.e10. https://doi.org/10.1016/j.gie.2021.08.022
- Hisada H, Sakaguchi Y, Oshio K, Mizutani S, Nakagawa H, Sato J, et al. Endoscopic treatment of superficial gastric cancer: present status and future. Curr Oncol 2022;29:4678-4688. https://doi.org/10.3390/curroncol29070371
- Choi J, Kim SG, Im JP, Kim JS, Jung HC, Song IS. Comparison of endoscopic ultrasonography and conventional endoscopy for prediction of depth of tumor invasion in early gastric cancer. Endoscopy 2010;42:705-713. https://doi.org/10.1055/s-0030-1255617
- Yanai H, Noguchi T, Mizumachi S, Tokiyama H, Nakamura H, Tada M, et al. A blind comparison of the effectiveness of endoscopic ultrasonography and endoscopy in staging early gastric cancer. Gut 1999;44:361-365. https://doi.org/10.1136/gut.44.3.361
- Yoon HJ, Kim S, Kim JH, Keum JS, Oh SI, Jo J, et al. A lesion-based convolutional neural network improves endoscopic detection and depth prediction of early gastric cancer. J Clin Med 2019;8:1310.
- Wu L, Wang J, He X, Zhu Y, Jiang X, Chen Y, et al. Deep learning system compared with expert endoscopists in predicting early gastric cancer and its invasion depth and differentiation status (with videos). Gastrointest Endosc 2022;95:92-104.e3. https://doi.org/10.1016/j.gie.2021.06.033
- Wu L, He X, Liu M, Xie H, An P, Zhang J, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial. Endoscopy 2021;53:1199-1207. https://doi.org/10.1055/a-1350-5583
- Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J Clin 2017;67:93-99. https://doi.org/10.3322/caac.21388
- Jin C, Jiang Y, Yu H, Wang W, Li B, Chen C, et al. Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer. Br J Surg 2021;108:542-549. https://doi.org/10.1002/bjs.11928
- Li J, Dong D, Fang M, Wang R, Tian J, Li H, et al. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. Eur Radiol 2020;30:2324-2333. https://doi.org/10.1007/s00330-019-06621-x
- Dong D, Fang MJ, Tang L, Shan XH, Gao JB, Giganti F, et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study. Ann Oncol 2020;31:912-920. https://doi.org/10.1016/j.annonc.2020.04.003
- Jiang Y, Jin C, Yu H, Wu J, Chen C, Yuan Q, et al. Development and validation of a deep learning CT signature to predict survival and chemotherapy benefit in gastric cancer: a multicenter, retrospective study. Ann Surg 2021;274:e1153-e1161. https://doi.org/10.1097/SLA.0000000000003778
- Zhang L, Dong D, Zhang W, Hao X, Fang M, Wang S, et al. A deep learning risk prediction model for overall survival in patients with gastric cancer: a multicenter study. Radiother Oncol 2020;150:73-80. https://doi.org/10.1016/j.radonc.2020.06.010