School Math Field Trips(SMFT) for School Mathematics can be defined as teaching and learning activity of mathematics going into the field of Korean history, culture, science and technology. This is a literature analysis study to systemize teaching and learning method of mathematics based on literature analysis and real SMFT activity. First, SMFT was introduced to improve cognitive affective and cultural-mathematical teaching and learning method of mathematics. Second, SMFT has three purposes of cognitive, affective and cultural-mathematical. Third, to conduct mathematical education activity the direction of teaching was set. Forth, the progressing way of developing material and SMFT was researched. Fifth, developing the evaluation standard of SMFT and evaluation method was suggested.
본 연구에서는 7차 교육과정에서 요구하는 교실 수업 개선의 한 방법으로 웹 자료의 활용이 초등학교 수학과의 자기 주도적 학습에 어떻게 영향을 주는가를 알아보는데 그 목적이 있다. 본 연구를 통하여 웹 자료가 아동들에게 적극적인 학습태도를 갖게 해 주며, 수학 개념 형성을 용이하게 해 주며 협동학습에 도움을 주며 수준별 학습을 강화시켜 주고 문제해결력을 신장시키고 스스로 객관적 평가를 할 수 있도록 하여 자기 주도적 학습에 긍정적 영향을 주었음을 알 수 있었다.
The purpose of this study is to investigate the effectiveness of academic achievements, science process skill and scientific attitude. The subjects of this study were 68 fourth-grade elementary school students who were 33 students for the 5E learning cycle instruction and 35 students for traditional instruction. The control group was taught with traditional teaching method, while the experimental group was taught 'the change to the volume of material due to heat' unit of 4th grade with the developed learning cycle model. The results were as fellows: First, the learning cycle instruction is more effective for understanding of a concept related to the change to the volume of material due to heat. Second, the learning cycle model seems more effective for the expansion of both scientific inquiry ability and scientific attitude.
Convolution Neural Network(CNN) is a class of deep learning algorithms and can be used for image analysis. In particular, it has excellent performance in finding the pattern of images. Therefore, CNN is commonly applied for recognizing, learning and classifying images. In this study, the surface defect classification performance of Al 6061 extruded material using CNN-based algorithms were compared and evaluated. First, the data collection criteria were suggested and a total of 2,024 datasets were prepared. And they were randomly classified into 1,417 learning data and 607 evaluation data. After that, the size and quality of the training data set were improved using data augmentation techniques to increase the performance of deep learning. The CNN-based algorithms used in this study were VGGNet-16, VGGNet-19, ResNet-50 and DenseNet-121. The evaluation of the defect classification performance was made by comparing the accuracy, loss, and learning speed using verification data. The DenseNet-121 algorithm showed better performance than other algorithms with an accuracy of 99.13% and a loss value of 0.037. This was due to the structural characteristics of the DenseNet model, and the information loss was reduced by acquiring information from all previous layers for image identification in this algorithm. Based on the above results, the possibility of machine vision application of CNN-based model for the surface defect classification of Al extruded materials was also discussed.
The bandgap characteristics of semiconductor materials are an important factor when utilizing semiconductor materials for various applications. In this study, based on data provided by AFLOW (Automatic-FLOW for Materials Discovery), the bandgap of a semiconductor material was predicted using only the material's compositional features. The compositional features were generated using the python module of 'Pymatgen' and 'Matminer'. Pearson's correlation coefficients (PCC) between the compositional features were calculated and those with a correlation coefficient value larger than 0.95 were removed in order to avoid overfitting. The bandgap prediction performance was compared using the metrics of R2 score and root-mean-squared error. By predicting the bandgap with randomforest and xgboost as representatives of the ensemble algorithm, it was found that xgboost gave better results after cross-validation and hyper-parameter tuning. To investigate the effect of compositional feature selection on the bandgap prediction of the machine learning model, the prediction performance was studied according to the number of features based on feature importance methods. It was found that there were no significant changes in prediction performance beyond the appropriate feature. Furthermore, artificial neural networks were employed to compare the prediction performance by adjusting the number of features guided by the PCC values, resulting in the best R2 score of 0.811. By comparing and analyzing the bandgap distribution and prediction performance according to the material group containing specific elements (F, N, Yb, Eu, Zn, B, Si, Ge, Fe Al), various information for material design was obtained.
The purpose of this study was to examine the concept of r-learning based on existing studies of r-learning. It also aimed to analyze r-learning environments in an effort to determine prerequisites for the successful entrenchment of r-learning in material(technology and infrastructure), human(young children and teacher) and institutional(law and policy) aspects. This study intended to suggest some of the right directions for the revitalization of r-learning. In conclusion, the position of r-learning and its interrelationship with related systems in the ecosystem of early childhood education should accurately be grasped to accelerate the integration of r-learning into kindergarten education to maximize the effects of the convergence of the two. Intensive efforts should be made from diverse angles to expedite the spread and enrichment of r-learning.
Digital textbooks draw attention as a new format of educational material, using the advantages of information technology; this innovative learning tool requires consideration as a part of successful and effective learning. The main purpose of the article is to investigate the mediating role of self-regulation between digital literacy and learning outcomes (academic performance and learning motivation) when using digital textbooks as a learning tool in Middle School English. Both descriptive and regression analysis were used as data analyses methods. The main findings of this study were as follows: first, digital literacy and self-regulation significantly predicted academic performance and learning motivation; second, self-regulation fully mediated between digital literacy and academic performance; third, self-regulation partially mediated between digital literacy and learning motivation. The research results proved the effects of digital literacy and self-regulation on the learning outcomes and mediating role of self-regulation between digital literacy and learning outcomes. These results help to design and implement effective lessons when using a digital textbook in Middle school English.
This paper represent a method of U-Learning based on advanced e-Learning. Ubiquitous computing configuration and advanced Information technology. As we know well, the 21th century is called knowledge based informational society. Many scholar stress that the improved 21th century's educational paradigm be able to success based on advanced educational paradigm. Therefore, we discuss the material for e-Learning fields including with necessity, vision, law, quality authorization etc. Also, we discuss the relational technologies including with meta data, standardization, identification etc. Finally, we propose a method for constructing the U-Learning based on advanced e-Learning and Ubiquitous computing configuration.
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.388-393
/
2024
The convergence of machine learning and smart farm is becoming more and more important. The purpose of this research is to quantitatively analyze machine learning and smart farm with bibliographic data from 2013 to 2023. This study analyzed the 251 articles, filtered from the Web of Science, with regard to the article publication trend, the article citation trend, the top 10 research area, and the top 10 keywords representing the articles. The quantitative analysis results reveal the four points: First, the number of article publications in machine learning and smart farm continued growing from 2016. Second, the article citations in machine learning and smart farm drastically increased since 2018. Third, Computer Science, Engineering, Agriculture, Telecommunications, Chemistry, Environmental Sciences Ecology, Material Science, Instruments Instrumentation, Science Technology Other Topics, and Physics are top 10 research areas. Fourth, it is 'machine learning', 'smart farming', 'internet of things', 'precision agriculture', 'deep learning', 'agriculture', 'big data', 'machine', 'smart' and 'smart agriculture' that are the top 10 keywords composing authors' keywords in the articles in machine learning and smart farm from 2013 to 2023.
본 연구는 수준이 다른 여러 영재 집단의 소속 학생들이 도형수와 관련된 과제를 해결하고 창의적 산출물을 도출하는 가운데 그들의 수학적 사고력과 창의적인 아이디어를 발휘할 수 있도록 수준별 수학 영재 교수 학습 자료를 개발하는 절차와 방법을 탐구해 보는 데 그 목적이 있다. 이를 위해 교수 학습 자료 개발의 준거와 절차 모형에 따라 도형수 과제의 교수 학습 자료의 원형과 실제적인 자료를 개발하고 그것을 현장 수업에 적용하면서 학생들의 다양한 해결과정을 분석하면서 그 자료의 문제점과 개선점을 제시하였다. 그리고 초등학교에서 집단의 수준별로 산출물 탐구가 가능한 도형수의 내용 범위를 설정해 보면서 차후 유사한 다른 수학 영재 교수 학습 자료 개발할 때 고려한 네 가지의 시사점을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.