• Title/Summary/Keyword: learning function

Search Result 2,315, Processing Time 0.031 seconds

A Discourse Analysis of Middle School Students in Mathematical Modeling Teaching and Learning (수학적 모델링 교수·학습에서 중학생들의 담화 분석)

  • Chang, HyunSuk
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.45-65
    • /
    • 2020
  • This research is an analysis of communication that occurs during the quadratic function teaching and learning process of middle school students, which reflects mathematical modeling. For an in-depth analysis of the communication, Sfard(2008)'s discourse theory and language analysis framework were applied. A quadratic function mathematical modeling teaching and learning were conducted for the week second (1 hour) in June 2019 for students who studied the concept of a quadratic function and who passed a specified period (3 months). The results are as follows. First, The commo-gnitive conflict occurred because of differences in prior knowledge other than quadratic function among students. Second, in the course of communication, knowledge was expanded through problem-solving from different perspectives. These results can be interpreted as allowing students to clearly reveal problems in the communication process based on their understanding of the concept of quadratic functions and to facilitate cooperation among students. of the concept of quadratic functions and to facilitate cooperation among students.

The Effect of Performance of a Stop Signal Task on the Execution and Stop Function of Movement (정지신호과제의 수행이 동작의 실행과 정지기능에 미치는 영향)

  • Kwon, Jung-Won;Nam, Seok-Hyun;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • Purpose: We studied the changes in motor response time and stop signal response time following visuomotor skill learning of a stop signal task in young healthy subjects. This study also was designed to determine what an effective practice is for different stop signals in the stop signal task (SST). Methods: Forty-five right-handed normal volunteers without a history of neurological dysfunction were recruited. They all gave written informed consent. In all subjects, motor reaction time (RT) and stop signal reaction time (SSRT) were measured for the stop signal task. Tasks were classified into three categories: predictable-stop signal task (P-SST) practice group random-stop signal task (R-SST) practice group control group. Results: Motor reaction time in the P-SST was significantly reduced when comparing pre- and post-tests (p<0.05). Stop signal reaction times in the P-SST and the R-SST were significantly reduced following motor skill learning (p<0.05). Also, the reaction time of the R-SST was shorter than that of the P-SST. Conclusion: These findings indicate that practice of an SST improves motor performance and stop function for some stop signals in the SST. P-SST practice was effective in the stop function of regular movement because of faster of the motor prediction and preparation but the R-SST was effective in the stop function of movements because of faster motor selection.

Nonlinear Function Approximation Using Efficient Higher-order Feedforward Neural Networks (효율적 고차 신경회로망을 이용한 비선형 함수 근사에 대한 연구)

  • 신요안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.251-268
    • /
    • 1996
  • In this paper, a higher-order feedforward neural network called ridge polynomial network (RPN) which shows good approximation capability for nonlnear continuous functions defined on compact subsets in multi-dimensional Euclidean spaces, is presented. This network provides more efficient and regular structure as compared to ordinary higher-order feedforward networks based on Gabor-Kolmogrov polynomial expansions, while maintating their fast learning property. the ridge polynomial network is a generalization of the pi-sigma network (PSN) and uses a specialform of ridge polynomials. It is shown that any multivariate polynomial can be exactly represented in this form, and thus realized by a RPN. The approximation capability of the RPNs for arbitrary continuous functions is shown by this representation theorem and the classical weierstrass polynomial approximation theorem. The RPN provides a natural mechanism for incremental function approximation based on learning algorithm of the PSN. Simulation results on several applications such as multivariate function approximation and pattern classification assert nonlinear approximation capability of the RPN.

  • PDF

Intelligent control system design of track vehicle based-on fuzzy logic (퍼지 로직에 의한 궤도차량의 지능제어시스템 설계)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle (K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Blending Precess Optimization using Fuzzy Set Theory an Neural Networks (퍼지 및 신경망을 이용한 Blending Process의 최적화)

  • 황인창;김정남;주관정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (자율주행 이동로봇의 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

Dynamic Control of Track Vehicle Using Fuzzy-Neural Control Method (퍼지-뉴럴 제어기법에 의한 궤도차량의 동적 제어)

  • 한성현;서운학;조길수;윤강섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.133-139
    • /
    • 1997
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is propored a learning controller consisting of two neural network-fuzzy based on independent resoning and a connection net with fixed weights to simply the neural network-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle

  • PDF

Real-Time Control for Autonomous Cruise of Mobile Robot Using Fuzzy Neural Network (퍼지신경망을 이용한 자율주행 이동로봇의 실시간 제어)

  • 정동연;이우송;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1697-1700
    • /
    • 2003
  • We propose a new technique for real-time controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

  • PDF