• Title/Summary/Keyword: learning data

Search Result 11,685, Processing Time 0.036 seconds

Determination of Optimal Adhesion Conditions for FDM Type 3D Printer Using Machine Learning

  • Woo Young Lee;Jong-Hyeok Yu;Kug Weon Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.419-427
    • /
    • 2023
  • In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.

A Quantitative Analysis on Machine Learning and Smart Farm with Bibliographic Data from 2013 to 2023

  • Yong Sauk Hau
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.388-393
    • /
    • 2024
  • The convergence of machine learning and smart farm is becoming more and more important. The purpose of this research is to quantitatively analyze machine learning and smart farm with bibliographic data from 2013 to 2023. This study analyzed the 251 articles, filtered from the Web of Science, with regard to the article publication trend, the article citation trend, the top 10 research area, and the top 10 keywords representing the articles. The quantitative analysis results reveal the four points: First, the number of article publications in machine learning and smart farm continued growing from 2016. Second, the article citations in machine learning and smart farm drastically increased since 2018. Third, Computer Science, Engineering, Agriculture, Telecommunications, Chemistry, Environmental Sciences Ecology, Material Science, Instruments Instrumentation, Science Technology Other Topics, and Physics are top 10 research areas. Fourth, it is 'machine learning', 'smart farming', 'internet of things', 'precision agriculture', 'deep learning', 'agriculture', 'big data', 'machine', 'smart' and 'smart agriculture' that are the top 10 keywords composing authors' keywords in the articles in machine learning and smart farm from 2013 to 2023.

Blockchain Based Data-Preserving AI Learning Environment Model for Cyber Security System (AI 사이버보안 체계를 위한 블록체인 기반의 Data-Preserving AI 학습환경 모델)

  • Kim, Inkyung;Park, Namje
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.12
    • /
    • pp.125-134
    • /
    • 2019
  • As the limitations of the passive recognition domain, which is not guaranteed transparency of the operation process, AI technology has a vulnerability that depends on the data. Human error is inherent because raw data for artificial intelligence learning must be processed and inspected manually to secure data quality for the advancement of AI learning. In this study, we examine the necessity of learning data management before machine learning by analyzing inaccurate cases of AI learning data and cyber security attack method through the approach from cyber security perspective. In order to verify the learning data integrity, this paper presents the direction of data-preserving artificial intelligence system, a blockchain-based learning data environment model. The proposed method is expected to prevent the threats such as cyber attack and data corruption in providing and using data in the open network for data processing and raw data collection.

Generating Training Dataset of Machine Learning Model for Context-Awareness in a Health Status Notification Service (사용자 건강 상태알림 서비스의 상황인지를 위한 기계학습 모델의 학습 데이터 생성 방법)

  • Mun, Jong Hyeok;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In the context-aware system, rule-based AI technology has been used in the abstraction process for getting context information. However, the rules are complicated by the diversification of user requirements for the service and also data usage is increased. Therefore, there are some technical limitations to maintain rule-based models and to process unstructured data. To overcome these limitations, many studies have applied machine learning techniques to Context-aware systems. In order to utilize this machine learning-based model in the context-aware system, a management process of periodically injecting training data is required. In the previous study on the machine learning based context awareness system, a series of management processes such as the generation and provision of learning data for operating several machine learning models were considered, but the method was limited to the applied system. In this paper, we propose a training data generating method of a machine learning model to extend the machine learning based context-aware system. The proposed method define the training data generating model that can reflect the requirements of the machine learning models and generate the training data for each machine learning model. In the experiment, the training data generating model is defined based on the training data generating schema of the cardiac status analysis model for older in health status notification service, and the training data is generated by applying the model defined in the real environment of the software. In addition, it shows the process of comparing the accuracy by learning the training data generated in the machine learning model, and applied to verify the validity of the generated learning data.

A Neural Network Combining a Competition Learning Model and BP ALgorithm for Data Mining (데이터 마이닝을 위한 경쟁학습모텔과 BP알고리즘을 결합한 하이브리드형 신경망)

  • 강문식;이상용
    • Journal of Information Technology Applications and Management
    • /
    • v.9 no.2
    • /
    • pp.1-16
    • /
    • 2002
  • Recently, neural network methods have been studied to find out more valuable information in data bases. But the supervised learning methods of neural networks have an overfitting problem, which leads to errors of target patterns. And the unsupervised learning methods can distort important information in the process of regularizing data. Thus they can't efficiently classify data, To solve the problems, this paper introduces a hybrid neural networks HACAB(Hybrid Algorithm combining a Competition learning model And BP Algorithm) combining a competition learning model and 8P algorithm. HACAB is designed for cases which there is no target patterns. HACAB makes target patterns by adopting a competition learning model and classifies input patterns using the target patterns by BP algorithm. HACAB is evaluated with random input patterns and Iris data In cases of no target patterns, HACAB can classify data more effectively than BP algorithm does.

  • PDF

A Big Data Learning for Patent Analysis (특허분석을 위한 빅 데이터학습)

  • Jun, Sunghae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.406-411
    • /
    • 2013
  • Big data issue has been considered in diverse fields. Also, big data learning has been required in all areas such as engineering and social science. Statistics and machine learning algorithms are representative tools for big data learning. In this paper, we study learning tools for big data and propose an efficient methodology for big data learning via legacy data to practical application. We apply our big data learning to patent analysis, because patent is one of big data. Also, we use patent analysis result for technology forecasting. To illustrate how the proposed methodology could be applied in real domain, we will retrieve patents related to big data from patent databases in the world. Using searched patent data, we perform a case study by text mining preprocessing and multiple linear regression of statistics.

A Deep Learning Application for Automated Feature Extraction in Transaction-based Machine Learning (트랜잭션 기반 머신러닝에서 특성 추출 자동화를 위한 딥러닝 응용)

  • Woo, Deock-Chae;Moon, Hyun Sil;Kwon, Suhnbeom;Cho, Yoonho
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.143-159
    • /
    • 2019
  • Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.

A Study on the Development of Adaptive Learning System through EEG-based Learning Achievement Prediction

  • Jinwoo, KIM;Hosung, WOO
    • Fourth Industrial Review
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Purpose - By designing a PEF(Personalized Education Feedback) system for real-time prediction of learning achievement and motivation through real-time EEG analysis of learners, this system provides some modules of a personalized adaptive learning system. By applying these modules to e-learning and offline learning, they motivate learners and improve the quality of learning progress and effective learning outcomes can be achieved for immersive self-directed learning Research design, data, and methodology - EEG data were collected simultaneously as the English test was given to the experimenters, and the correlation between the correct answer result and the EEG data was learned with a machine learning algorithm and the predictive model was evaluated.. Result - In model performance evaluation, both artificial neural networks(ANNs) and support vector machines(SVMs) showed high accuracy of more than 91%. Conclusion - This research provides some modules of personalized adaptive learning systems that can more efficiently complete by designing a PEF system for real-time learning achievement prediction and learning motivation through an adaptive learning system based on real-time EEG analysis of learners. The implication of this initial research is to verify hypothetical situations for the development of an adaptive learning system through EEG analysis-based learning achievement prediction.

A Clustering-based Semi-Supervised Learning through Initial Prediction of Unlabeled Data (미분류 데이터의 초기예측을 통한 군집기반의 부분지도 학습방법)

  • Kim, Eung-Ku;Jun, Chi-Hyuck
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.3
    • /
    • pp.93-105
    • /
    • 2008
  • Semi-supervised learning uses a small amount of labeled data to predict labels of unlabeled data as well as to improve clustering performance, whereas unsupervised learning analyzes only unlabeled data for clustering purpose. We propose a new clustering-based semi-supervised learning method by reflecting the initial predicted labels of unlabeled data on the objective function. The initial prediction should be done in terms of a discrete probability distribution through a classification method using labeled data. As a result, clusters are formed and labels of unlabeled data are predicted according to the Information of labeled data in the same cluster. We evaluate and compare the performance of the proposed method in terms of classification errors through numerical experiments with blinded labeled data.

A Survey on Deep Learning-based Analysis for Education Data (빅데이터와 AI를 활용한 교육용 자료의 분석에 대한 조사)

  • Lho, Young-uhg
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.240-243
    • /
    • 2021
  • Recently, there have been research results of applying Big data and AI technologies to the evaluation and individual learning for education. It is information technology innovations that collect dynamic and complex data, including student personal records, physiological data, learning logs and activities, learning outcomes and outcomes from social media, MOOCs, intelligent tutoring systems, LMSs, sensors, and mobile devices. In addition, e-learning was generated a large amount of learning data in the COVID-19 environment. It is expected that learning analysis and AI technology will be applied to extract meaningful patterns and discover knowledge from this data. On the learner's perspective, it is necessary to identify student learning and emotional behavior patterns and profiles, improve evaluation and evaluation methods, predict individual student learning outcomes or dropout, and research on adaptive systems for personalized support. This study aims to contribute to research in the field of education by researching and classifying machine learning technologies used in anomaly detection and recommendation systems for educational data.

  • PDF