References
- Bar-Hillel, A., T. hertz, N. Shental, and D. Weinshall, Learning distance functions using equivalence relations. Proceedings of 20th International Conference on Machine Learning, Washington, USA, 2003, pp.11-18.
- Basu, S., A. Banerjee, and R. Mooney, Semisupervised clustering by seeding. Proceedings of the 19th International Conference on Machine Learning, Sydney, Australia, 2002, pp. 19-26.
- Bilenko, M., S. Basu, and R. Mooney, Integrating constraints and metric learning in semisupervised clustering. Proceedings of the 21st International Conference on Machine Learning, Banff, Canada, 2004, pp.81-88.
- Bouchachia, A. and W. pedrycz, Data clustering with partial supervision. Data Mining and Knowledge Discovery, Vol.12, No.1(2006), pp. 47-78. https://doi.org/10.1007/s10618-005-0019-1
- Chapelle, O. and A. Zien, Semi-supervised classification by low density separation, Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, 2005, pp. 57-64.
- Cozman, F., I. Cohen, and M. Cirelo, Semi- Supervised learning of mixture models. Proceedings of the 20th International Conference on Machine Learning, 2003, pp.99-106.
- Demiriz, A., K. Bennett, and M. Embrechts, Semi-Supervised clustering using genetic algorithms. Intelligent Engineering Systems, Vol.9(1999), pp.809-814.
- Dempster, A.P., N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, Vol.39(1977), pp.1-38.
- Klein, D., S.D. Kamvar, and C. Manning, From instance-level constraints to space-level constraints : Making the most of prior knowledge in data clustering. Proceedings of the 19th International Conference on Machine Learning, 2002, pp.307-314.
- Lee, D. and J. Lee, Equilibrium-based support vector machine for semi-supervised classification, IEEE Trans. on Neural Networks, Vol.18, No.2(2007), pp.578-583. https://doi.org/10.1109/TNN.2006.889495
- Nigam, K., A. McCallum, S. Thrun, and T. Mitchell, Text classification from labeled and unlabeled documents using EM, Machine Learning, Vol.39(2000), pp.103-134. https://doi.org/10.1023/A:1007692713085
- Tan, P.N., M. Steinbach, and V.Kumar, Introduction to Data Mining, Pearson Education, Boston, 2006.
- Wagstaff, K., C. Cardie, S. Rogers, and S. Schroedl, Constrained K-means clustering with background knowledge. Proceedings of the 18th International Conference on Machine Learning, Massachusetts, USA, 2001, pp.577-584.
- Xing, E.P., A.Y. Ng, M.I. Jordan, and S. Russell, Distance metric learning, with application to clustering with side information. Advances in Neural Information Processing Systems, Vol. 15(2003), pp.505-512.
- Zhu, X.Semi-supervised learning literature survey, Computer Sciences TR 1530, University of Wisconsin-Madison. http://www.cs.wisc. edu/-jerryzhu/pub/s sl_survey.pdf, 2007.
- UCI repository : http://www.ics.uci.edu/-mlearn/MLRepository .html.