Myung-In Kim;Seung-Ho Ji;Hyun-Seop Wi;Dae-Won Lee;Hui-Min Jang;Myeong-Seong Yun;Dong-Kyoon Han
Journal of the Korean Society of Radiology
/
v.17
no.6
/
pp.929-937
/
2023
Human equivalent phantoms manufactured using 3D printers are cheaper and can be manufactured in a short time than conventional human phantoms. However, many phantoms are manufactured with less than 100 % of Infill Density, one of the 3D printer output setting variables. Therefore, this study compared the Bone Phantom CT number, which differs from the ratio of five Infill Density produced using a 3D printer, to the CT number of the actual human body Bone. In addition, the usefulness of the manufactured phantom was evaluated by producing a 100 % elbow joint phantom with Infill Density and setting the Infill Density to 100 % through CT number comparison for each tissue on computed tomography (CT). As a result, the Bone Phantom printed with 100 % Infill Density did not show the most statistically significant difference from the CT number value of the actual human Bone, and the CT number of each tissue did not show a statistically significant difference from the CT number value of each tissue of the actual human elbow joint.
Speaker diarization, which labels for "who spoken when?" in speech with multiple speakers, has been studied on a deep neural network-based end-to-end method for labeling on speech overlap and optimization of speaker diarization models. Most deep neural network-based end-to-end speaker diarization systems perform multi-label classification problem that predicts the labels of all speakers spoken in each frame of speech. However, the performance of the multi-label-based model varies greatly depending on what the threshold is set to. In this paper, it is studied a speaker diarization system using single-label classification so that speaker diarization can be performed without thresholds. The proposed model estimate labels from the output of the model by converting speaker labels into a single label. To consider speaker label permutations in the training, the proposed model is used a combination of Permutation Invariant Training (PIT) loss and cross-entropy loss. In addition, how to add the residual connection structures to model is studied for effective learning of speaker diarization models with deep structures. The experiment used the Librispech database to generate and use simulated noise data for two speakers. When compared with the proposed method and baseline model using the Diarization Error Rate (DER) performance the proposed method can be labeling without threshold, and it has improved performance by about 20.7 %.
Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
Journal of Soil and Groundwater Environment
/
v.28
no.6
/
pp.71-89
/
2023
A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.
Journal of the Microelectronics and Packaging Society
/
v.30
no.4
/
pp.44-49
/
2023
In the global pursuit of carbon neutrality, the rapid increase in the adoption of electric vehicles (EVs) has led to a corresponding surge in the demand for batteries. To achieve high efficiency in electric vehicles, considerations of weight reduction and battery safety have become crucial factors. Copper and aluminum, both recognized as lightweight materials, can be effectively joined through laser welding. However, due to the distinct physical characteristics of these two materials, the process of joining them poses technical challenges. This study focuses on conducting simulations to identify the optimal laser parameters for welding copper and aluminum, with the aim of streamlining the welding process. Additionally, a Graphic User Interface (GUI) program has been developed using the Python language to visually present the results. Using machine learning image data, this program is anticipated to predict joint success and serve as a guide for safe and efficient laser welding. It is expected to contribute to the safety and efficiency of the electric vehicle battery assembly process.
Due to recent severe climate change, abnormal weather phenomena, and other factors, the frequency and magnitude of natural disasters are increasing. The need for disaster management using artificial satellites is growing, especially during large-scale disasters due to time and economic constraints. In this study, we have summarized the current status of next-generation medium-sized satellites and microsatellites in operation and under development, as well as trends in satellite imagery analysis techniques using a large volume of satellite imagery driven by the advancement of the space industry. Furthermore, by utilizing satellite imagery, particularly focusing on recent major disasters such as floods, landslides, droughts, and wildfires, we have confirmed how satellite imagery can be employed for damage analysis, thereby establishing its potential for disaster management. Through this study, we have presented satellite development and operational statuses, recent trends in satellite imagery analysis technology, and proposed disaster response strategies that utilize various types of satellite imagery. It was observed that during the stages of disaster progression, the utilization of satellite imagery is more prominent in the response and recovery stages than in the prevention and preparedness stages. In the future, with the availability of diverse imagery, we plan to research the fusion of cutting-edge technologies like artificial intelligence and deep learning, and their applicability for effective disaster management.
The revised 2022 educational curriculum highlighted the significance of mathematical literacy as a foundational competency that can be cultivated through the learning of various subjects, along with language proficiency and digital literacy. However, due to the lack of a precise definition for mathematical literacy, there exists a challenge in systematically implementing it across all subjects in the educational curriculum. The aim of this study is to clarify the definition of mathematical literacy in the curriculum through a literature review and to analyze the application patterns of mathematical literacy in other subjects so that mathematical literacy can be systematically applied as a basic literacy in Korea's curriculum. To achieve this, the study first clarifies and categorizes the meaning of mathematical literacy through a comparative analysis of terms such as numeracy and mathematical competence via a literature review. Subsequently, the study compares the categories of mathematical literacy identified in both domestic and international educational curricula and analyzes the application of mathematical literacy in the education curriculum of New South Wales (NSW), Australia, where mathematical literacy is reflected in the achievement standards across various subjects. It is expected that understanding each property by subdividing the meaning of mathematical literacy and examining the application modality to the curriculum will help construct a curriculum that reflects mathematical literacy in subjects other than mathematics.
This study conducted preliminary study to identify effective ways to use ChatGPT in traffic policing by analyzing ChatGPT's responses to the driver's license test and the road traffic accident appraiser test. I collected ChatGPT responses for the driver's license test item pool and the road traffic accident appraiser test using the OpenAI API with Python code for 30 iterative experiments, and analyzed the percentage of correct answers by test, year, section, and consistency. First, the average correct answer rate for the driver's license test and the for road traffic accident appraisers test was 44.60% and 35.45%, respectively, which was lower than the pass criteria, and the correct answer rate after 2022 was lower than the average correct answer rate. Second, the percentage of correct answers by section ranged from 29.69% to 56.80%, showing a significant difference. Third, it consistently produced the same response more than 95% of the time when the answer was correct. To effectively utilize ChatGPT, it is necessary to have user expertise, evaluation data and analysis methods, design a quality traffic law corpus and periodic learning.
KIPS Transactions on Computer and Communication Systems
/
v.12
no.9
/
pp.263-272
/
2023
Industrial Internet of Things (IIoT) is an important factor in increasing production efficiency in industrial sectors, along with data collection, exchange and analysis through large-scale connectivity. However, as traffic increases explosively due to the recent spread of IIoT, an allocation method that can efficiently process traffic is required. In this thesis, I propose a two-stage task offloading decision method to increase successful task throughput in an IIoT environment. In addition, I consider a hybrid offloading system that can offload compute-intensive tasks to a mobile edge computing server via a cellular link or to a nearby IIoT device via a Device to Device (D2D) link. The first stage is to design an incentive mechanism to prevent devices participating in task offloading from acting selfishly and giving difficulties in improving task throughput. Among the mechanism design, McAfee's mechanism is used to control the selfish behavior of the devices that process the task and to increase the overall system throughput. After that, in stage 2, I propose a multi-armed bandit (MAB)-based task offloading decision method in a non-stationary environment by considering the irregular movement of the IIoT device. Experimental results show that the proposed method can obtain better performance in terms of overall system throughput, communication failure rate and regret compared to other existing methods.
It has recently be emphasized in science education that lessons that can develop "scientific participation and action" should be implemented to scientifically recognize various problems and respond to them as well as risks that occur in real life. This study aims to analyze the characteristics of scientific participation and action lessons as perceived by the preservice primary school teachers. To do that, the researchers collected and analyzed the lesson plans designed by the preservice teachers based on the achievement standard related to noise for grades 3-4 in 2022 revised science curriculum. Focusing on the stages of "problem recognition," "data collection and analysis," and "implementation and sharing," the results identity the four main characteristics as problem-solving activity, inquiry activity, investigative activity, and activity that encourages practical actions. The two or three features were found to be combinated in a lesson depending on its context. In some cases, only one feature was seen in a lesson. Based on the results, educational implications were discussed in terms of the teaching and learning methods and teacher education for implementing scientific participation and action.
This study focused on the practical research needed to improve elementary school science lesson plans. Specifically, a video clip-based pedagogical reasoning activity that included elementary student misconceptions was presented and the influences of this activity on preservice teachers' science lesson planning were assessed. First, the eight preservice teacher participants were asked to write a lesson plan for a dissolution and solution unit, after which a first semi-structured interview was conducted. Then, the participants participated in a video clip-based pedagogical reasoning activity. Based on the activity results, the participants revised their previously planned lessons, and second semi-structured interviews were conducted. The data from the preservice teachers' lesson plans and interview transcripts were analyzed using a constant comparative method to investigate the lesson plan changes. It was found that after the video clip-based pedagogical reasoning activity, the preservice teacher tightened the activity or changed the material to understand the students' thinking processes. In addition, they supplemented their goals and assessment criteria to accommodate the diverse students' thinking. Some also specified motivational strategies that considered student interests, motivation, and possible misconceptions. However, some preservice teachers still set goals that did not sufficiently account for student misconceptions and some planned the student assessments based only on the learning goals rather than the students' thinking. The few preservice teachers were able to develop motivational strategies that considered interest, motivation, and misconceptions. The preservice teachers claimed that they had difficulty predicting the misconceptions and connecting these to the lesson content. Discussions were then held to assist the preservice teachers to consider possible student misconceptions when planning their lessons.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.