• 제목/요약/키워드: learning control

검색결과 3,783건 처리시간 0.038초

A Learning Controller for Repetitive Gait Control of Biped Walking Robot

  • Kho, Jae-Won;Lim, Dong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1464-1468
    • /
    • 2004
  • This paper presents a learning controller for repetitive gait control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured according to the walking period through the iterative learning, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of learning control to biped robotic motion is shown via dynamic simulation with 12-DOF biped walking robot.

  • PDF

이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기 (A Learning Controller for Repetitive Gate Control of Biped Walking Robot)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

로봇의 동역학 제어를 위한 학습제어 기법의 구현 및 성능 평가 (Implementation and performance evaluatio of learning control method for robot dyamics control)

  • 이동훈;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.552-555
    • /
    • 1997
  • Recently, increasing attention has been paid to the application of learning control method to robot manipulator control. Because the learning control method does not require an exact dynamic model, it is flexible and easy to implement. In this paper, we implement a learning control scheme which consists of a unique feedforward learning controller and a linear feedback controller. The learning control method does not require acceleration terms that are sensitive to noise and has the capability of rejecting unknown disturbances and adapting itself to time-varying system parameters. The feasibility of the learning control scheme is soon by implementing the control scheme to a commercial robot manipulator and the performance of which is also compared with the conventional linear PID control method.

  • PDF

Active Random Noise Control using Adaptive Learning Rate Neural Networks

  • Sasaki, Minoru;Kuribayashi, Takumi;Ito, Satoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.941-946
    • /
    • 2005
  • In this paper an active random noise control using adaptive learning rate neural networks is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. It is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  • PDF

이족 보행 로봇의 반복 걸음새 제어를 위한 학습제어기의 구현 (Implementation of a Learning Controller for Repetitive Gate Control of Biped Walking Robot)

  • 임동철;오성남;국태용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.594-596
    • /
    • 2005
  • This paper present a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of learning control to biped robotic motion is shown via dynamic simulation and experimental results with 24 DOF biped robot.

  • PDF

An Overview of Learning Control in Robot Applications

  • Ryu, Yeong-Soon
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.6-10
    • /
    • 1996
  • This paper presents an overview of research results obtained by the authors in a series of publications. Methods are developed both for time-varying and time-invariant for linear and nonlinear. for time domain and frequency domain . and for discrete-time and continuous-time systems. Among the topics presented are: 1. Learning control based on integral control concepts applied in the repetition domain. 2. New algorithms that give improved transient response of the indirect adaptive control ideas. 4. Direct model reference learning control. 5 . Learning control based frequency domain. 6. Use of neural networks in learning control. 7. Decentralized learning controllers. These learning algorithms apply to robot control. The decentralized learning control laws are important in such applications becaused of the usual robot decentralized controller structured.

  • PDF

A fuzzy dynamic learning controller for chemical process control

  • Song, Jeong-Jun;Park, Sun-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1950-1955
    • /
    • 1991
  • A fuzzy dynamic learning controller is proposed and applied to control of time delayed, non-linear and unstable chemical processes. The proposed fuzzy dynamic learning controller can self-adjust its fuzzy control rules using the external dynamic information from the process during on-line control and it can create th,, new fuzzy control rules autonomously using its learning capability from past control trends. The proposed controller shows better performance than the conventional fuzzy logic controller and the fuzzy self organizing controller.

  • PDF

Robust feedback error learning neural networks control of robot systems with guaranteed stability

  • Kim, Sung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.197-200
    • /
    • 1996
  • This paper considers feedback error learning neural networks for robot manipulator control. Feedback error learning proposed by Kawato [2,3,5] is a useful learning control scheme, if nonlinear subsystems (or basis functions) consisting of the robot dynamic equation are known exactly. However, in practice, unmodeled uncertainties and disturbances deteriorate the control performance. Hence, we presents a robust feedback error learning scheme which add robustifying control signal to overcome such effects. After the learning rule is derived, the stability is analyzed using Lyapunov method.

  • PDF

Simulation Study on Self-learning Fuzzy Control of CO Concentration

  • Tanaka, Kazuo;Sano, Manabu;Watanabe, Hiroyuki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1366-1369
    • /
    • 1993
  • This paper presents a simulation study on two self-learning control systems for a fuzzy prediction model of CO (carbon monoxide) concentration:linear control and fuzzy control. The self-learning control systems are realized by using Widrow-Hoff learning rule which is a basic learning method in neural networks. Simulation results show that the learning efficiency of fuzzy controller is superior to that of linear controller.

  • PDF

이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현 (Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot)

  • 임동철;국태용
    • 전기학회논문지P
    • /
    • 제59권1호
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.