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Abstract
This paper presents an overview of research results
obtained by the authors in a series of publications.
Methods are developed both for time-varying and time-
invariant, for lincar and nonlinear. for time domain and
frequency domain, and for discrete-time and
continuous-time systems.  Among the topics prescnted
are: 1. Learning control based on integral control
concepts applied in the repetition domain. 2. New
algorithms that give improved transicent response of the
learning process. 3. Indirect learning control based on
indirect adaptive control ideas. 4. Direct model
refcrence learning control. 5. Learning control based
frequency domain. 6. Use of neural nectworks in
learning control.
These learning algorithms apply to robot control. The
decentralized learning control laws are important in
such applications because of the wusual robot
decentralized controller structure.

Introduction

Learning is defined as any relatively permanent
change in behavior resulting from past experience. and
a lcarning system is characterized by its ability to
improve its behavior with time. in some sens¢ tending
towards an ultimate goal. This motivates the
development of control strategies that allow the system
to improve its performance by proper utilization of past
experience in performing the desired task.

Learning control refers to methods of converging
to zero tracking error at each time step of a process.
including the transient parts and any disturbances that
occur each time the process is repeated. This is
accomplished with minimal knowledge about the
system. by using past experience with the same task in
order to improve performance executing the task in‘the
future.  As the process is repeated. the input signal is
updated based on the data from previous trials. in order
to converge to the input signal which produces the
desired output.

The origins of the recent rescarch on learning
control started around 1984, with papers containing

stmilar ideas appearing on several continents [8. 25-29].

Over the past few years, the field of learning control

7. Decentralized learning controllers.

has grown dramatically |1-24]. with numerous
experimental works applied to robot manipulators [1-9,
25-29].

There are various methods for the implementation
of learning control laws on manipulators. In the
scquel. the approaches will be briefly described.

System Models

The learning control theories developed in the
referenccs assume a  linear system. In  many
applications, the systems of interest are in fact linear,
but the application that originally motivated the work is
robotics with its nonlincar dynamic equations. When
lincarized about the nominal trajectory, these equations
generally become linear with time-varving coefficients,
and the theory is capable of handling such time-varying
models. Linearization can usually be justified by the
fact that a fecdback controller is assumed to be
operating in the system which should keep the
trajectories within a linear rangc about the nominal.
It is the job of the learning control to eliminate the
errors that remain when the feedback controller
executes its command. These errors come from two
sources. First. it is only under very special
circumstances that a feedback control system given a
command will produce vero error in following the
command, even when there are no disturbances and the
control systein operates perfectlv.  Sccondly. when
there are disturbances such as gravity torques on a
robot link. these disturbances will often be repetitive.
appearing every time the robot performs the maneuver.
The learning control laws developed here eliminate
tracking errors from both sources. In addition, robot
controllers are usually decentralized, with independent
controllers for each link acting as if no other link exists.
The motion of one link can easily produce centrifugal
and coriolis effects on other links. and these are nearly
repetitive disturbances to the second link. When each
link has an independent learning controller operating,
one obtains a decentralized learning control situation.
and theories arc developed in the refercnces that
guarantee convergence lo zero tracking error in such
cascs.



Learning Control Concepts

A large number of control systems in use execute
repetitive operations. for cxample controllers for robots
in assembling and manufacturing systems. When
controllers are given the same command repeatedly.
they repeat the same errors in executing the command.
except for certain random disturbance effects. In
tracking problems these repeating errors can be large.
Over the last decade the field of learning control has
developed that allows controller designs that learn from
previous experience performing a command in order to
tmprove its performance in future repetitions.

There are a number of approaches to producing
learning controllers that learn from previous experience
executing a command. in order to converge on zero
tracking error as the repetitions of the command
progress.

1. Integral Control Based Learning Control Algorithms

The simplest form of these algorithms is based on
integral control concepts applied in repetition domain
[10].  When a feedback controller executes a tracking
command it usually produces tracking errors since it is
only rarely that the particular solution of a differential
equation is equal to the command that determines the
forcing function. Integral controllers have the
property that they will not tolerate a constant error.
because they produce an ever increasing corrective
action. Control system errors that repeat every time
the same command is given to the system, look like
constant errors when viewed at the same time in every
repetition. and hence can be climinated using the
equivalent of an integral controller formulated in the
repetition domain.

The most basic and predominant form of learning
control in the literature is based on integral control
concepts. One of the choices corresponds (o using a
learning control signal analogous to integral control.
When one has sufficient information about the system.
more sophisticated learning control choices can be
made.

2. Adaptive
Algorithms

Control Based Learning Control

The integral control based learning control
algorithms discussed above requirc that a stability
condition be satisfied to cnsure that the Icarning
process converges to zero tracking error as the
repetitions of the task progress. Knowing that this
criterion is satisfied requires somc knowledge of the
system. i.e. the discrete time input and output matrices.
By contrast. adaptive control based algorithms can give
guaranteed convergence to zero tracking error.

Adaptive control theory can be divided into direct
and indircct adaptive control. depending on whether
adaptive  control  action requires simultancous
identification of the system. By analogy. references
(11] and |12] develop dircct learning control and
indircct learning control algorithms. Reference |11}
obtains guarantced convergence of the learning process
by Liapunov mecthods. developing a theory of model
reference learning control based on the discrete-time
model rcference adaptive control developed in [14].
There is in fact considerable choice in the mathematical
model of the system used in the indirect learning
control developed in [12]. and the range of possibilities
treated in dctail in [1]. giving the advantages and

disadvantages of ecach. and giving a detailed
comparison with adaptive control methods.
Because indirect learning control involves

identification in the repetition domain. several studies
address this identification problem specificaily [13. 16,
17}.

3. Robustness Learning Control Algorithms

Sometimes it is unreasonable to ask for zero
tracking error. The desired trajectory may not be
feasible because:

1) Sometimes the only thing you know to ask for is
something that cannot be done physically. e.g. having
zero vibrations in a flexible robot during a maneuver.

2) The desired trajectory may require control actions
larger than the saturation limits of the actuators.

3) In digital control. controllability only guarantees that
you can go wherever you want in the state space after n
steps. where n is the order of the system.

Specifying a desired trajectory at all steps will in
general result in infeasibility.  To address these issues,
121] decvelops mcthods that are more robust. In
addition. reference |4] shows the benefits of using anti-
resct windup(ARW) ideas for the following purposes in
learning control:

1) Limiting poor transient behavior during learning,
particularly when the gain is poorly set.

2) Learning control assumes that the initial condition is
on the desircd trajectory. In some cases, such as
robots under gravity. one does not know how to abtain
the desired initial condition. and may start with
whatever initial condition the robot supplies given the
desired position as command to the robot. ARW may
help under these conditions.

3) When the desired trajectory is executable without
saturation. but the transients induce saturation, ARW
may speed the rccovery following a time interval of
saturation.

4) Somctimes the desired trajectory is not physically
exccutable. such as a unit step command. because it
requires control actions that go beyond the saturation



limit. This reference discusses the robustness of
learning controllers to system uncertainties in the
disturbances and determine methods of obtaining zcro
tracking error in systems.

4. Frequency Based Learning Control Algorithms

Learning controllers are developed here for lincar
systems using a frequency domain formulation. which
provides simplicity and additional insight compared to
time domain methods. The devclopment is in the
discrete frequency domain as opposed to prior
[requency based learning controller designs that have
been in the continuwous frequency domain.  The
discrete formulation avoids approximations involved in
applving a continuous time theory to digital systems.
A unifving mathematical formulation is developed that
gives the truc condition required for convergence of the
learning process.  This condition and the design
methods arc extended to the use of scro-phase filters
that limit lcarning to a certain bandwidth of interest.

Reference [7] demonstrates how very simple
learning controllers that arc casy to implement can be
used to improve robot tracking accuracy by more than
two orders of magnitude in a few repetitions. These
experiments show the effectiveness of learning control
concepts for improving high speed tracking accuracy by
a large margin. and doing so with minimal knowledge
about the syvstem dynamics, and doing so very quickly
and casily. Reference [5] investigales several issues in
the application of the learning or repetitive control
concepts to belt drive systems which is a color copy
machine in Xerox. This class of probiems include:
studying the ability of the method to address a large
portion of the error frequencies present by using a
properly chosen learning period: the influence of the
learning process on frequency components in the error
at frequencies other than those being addressed. and the
practical issues of using noncausal zero-phasc low-pass
filtering in the repetitive control problem in order to aid
in insuring stability of the learning process. These
experiments indicate that a proper implementation of
learning control could very significantly improve the
velocity error in rolling operations. using the simple
learning control approach.

5. Use of Neural Networks in Learning Control

A neural network is an information processing
system that is non-algorithmic. non-digital. and
intensely parallel. It is a system with inputs and
outputs and is composed of many simplc and similar
processing clements. The processing clements cach
have a number of internal parameters called weights.
Changing the weights of an element will alter the
behavior of the clement and therefore. will also alter

the behavior of the whole network.  The goal here is to
choose the weights of the network, self-learning process.
The use of neural networks to control unknown non-
linear systems has been motivated by their capability of
very complex mapping between their outputs and
inputs and their potentially high speed in computing
this mapping due to their massive parallelism. The
neural network is a natural candidate in the area of
identification and control of both linear and non-linear
systems. The neural networks are typically
implemented in the adaptive form. and thus possess
similar attributes of adaptive control as in |6].

6. Decentralized Learning Control

As discussed above. the usual robot feedback
controllers operate in a decentralized manner in which
cach link is controlled without knowledge of the actions
performed by other links. When each of these
decentralized controllers employs an independent
learning controller. one obtains a decentralized
learning control system. Reference [22] studies the
conditions for convergence of the decentralized
learning control system to zero tracking error when
integral control based learning is used in each of the
decentralized systems. A surprisingly strong result is
obtained sayving that. the decentralized learning control
applied to the coupled dynamic system is stable and
converges to zero tracking error for sufficiently small
samplc time, provided that learning controls for each
subsystem with all dynamic coupling removed are
stable for all sufficiently small sample time. For
linear svstems. this result applies no matter how large
the dvnamic coupling is between the systems.

Refercnce |23] presents a number of algorithms
for indirect decentralized learning control. related to
the indirect lcarning control of [12]. Guaranteed
convergence can be obtaincd for sufficiently small
samplc time. In addition. it is shown that in a noise
frec covironment. if thc maximum number of
repetitions needed for any subsystem to obtain zero
tracking error. then the decentralized indirect learning
control can accomplish zero tracking error in this same
number of repetitions.

Conclusions

In this paper an overview is presented of a rather
comprehensive mathematical theory of Icarning control
that has been developed by the authors [1-24]. The
field of learning control has bcen developed to
formulate controllers that achieve zero-tracking error at
each time step of a process including transients parts
and the presence of disturbances. with a minimal
knowledge about the system involved. This might
seem to much to ask for. but the goal is attained by



using past expericnces o improve performance.  This
is the key property that distinguishes learning control
from conventional controllers. The same process is
repeated continuously and each time the input signal is
updated based on the feedback information of previous
trials. Eventually. the input signal is modified to the
point that when applied to the svstem it produces the
desired output. A learning control law has been
presented that is well-bchaved and converges fast
producing a monotonic and gecometric reduction in
crror including transients.

References

1. Longman, R. W and Ryu. Y. S.. "INDIRECT
LEARNING CONTROL ALGORITHMS FOR TIME-
VARYING AND TIME-INVARIANT SYSTEMS."
Proceedings  of  the  Thirtieth  Annual  Allerton
Conference  on  Communication, Control  and
Computing, Monticello, IL. Scptember-October 1992

2. Ryu. Y. S.. and Longman. R. W.. "INDIRECT

LEARNING CONTROL FOR NONLINEAR
DYNAMICAL SYSTEMS." Advances in  the
Astronautical  Sciences, American  Astronautical

Society, Vol. 82, 1993,

3. Rvu, Y. S.. and Longman, R. W.. "INDIRECT
LEARNING CONTROL WITH APPLICATION TO
ROBOTS." Proceedings of the Fifth KSEA NFE
Regional Conference, Hoboken. NJ. April 1994.

4. Ryw. Y. S, and Longman, R. W.. "USE OF ANTI-
RESET WINDUP IN INTEGRAL CONTROL BASED
LEARNING AND REPETITIVE CONTROL." /KK
Transactions on Svstems, Man, and Cvbernetics, Vol.
3. 1994,

5. Ryvu. Y. S.. Longman. R. W.. Solcz. E. J.. and
deJong. J.. "EXPERIMENTS IN THE USE OF
REPETITIVE CONTROL IN BELT DRIVE
SYSTEMS." Proceedings of the Thirtv-second Annual
Allerton Conference on Communication, Control and
Computing, Monticello. IL. September-October 1994,

6. Rwvu. Y. S.. "NEURAL NETWORKS FOR SELF-
LEARNING CONTROL SYSTEMS.” NASA Intcrnal
Report by NASA Grant NAG 1-649, October 1994,

7. Ryu. Y. S.. “FREQUENCY VERSION OF
LEARNING CONTROL FOR THE ROBOT
MANIPULATOR.” Pacific Conference on
Manufacturing, Scoul, Korea. October 1996.

8. Middleton. R. H.. Goodwin. G. C.. and Longman.
R. W.. "A METHOD FOR IMPROVING THE

DYNAMIC ACCURACY OF A  ROBOT
PERFORMING A REPETITIVE TASK.” International
Journal of Robotics Research. Vol. 8. No. 5. October
1989, pp. 67-74. Also available as University of
Newcastle. Newcastle. Australia. Department of
Electrical Enginecring Technical Report EE8546. 1985.

9. Harokopos. E. G.. and Longman. R. W. “A
LEARNING CONTROLLER FOR TRACKING
ARBITRARY INPUTS [N ROBOT MOTIONS.”
Proceedings  of the Tenth [ASTED International
Svmposium on  Robotics and  Automation. Lugano,
Switzerland. Junc 29-July 2. 1987,

10, Phan. M.. and Longman. R. W. “A
MATHEMATICAL THEORY OF LEARNING
CONTROL FOR LINEAR DISCRETE
MULTIVARIABLE SYSTEMS.” Proceedings of the
AIAA/AAS Astrodynamics Conference. Minneapolis,
Minncsota. August 1988, pp. 740-746.

11. Phan. M.. and Longman. R. W.. "LIAPUNOV
BASED MODEL  REFERENCE  LEARNING
CONTROL." Proceedings of the Twenty-Sixth Annual
Allerton Confcrence on Communication. Control and
Computing. The University of Illinois. Alierton House,
Monticello. Ilinois. September 1988, pp. 927-936.

12. Phan. M.. and Longman, R. W.. “INDIRECT
LEARNING CONTROL WITH GUARANTEED
STABILITY.” Proceedings of the 1989 Conference on
Information Sciences and Systems. Johns Hopkins
University. Baltimore, MD. 1989, pp. 125-131.

13. Phan, M.. and Longman. R. W.. "LEARNING
SYSTEM  IDENTIFICATION.”  Modeling  and
Simulation. Instrument Society of America. Vol. 20.
Part 5. 1989, pp. 1857-1864.

14 Phan. M.. and Longman. R. W.. "A MODEL
REFERENCE ADAPTIVE CONTROL METHOD
FOR A CLASS OF LINEAR DISCRETE SYSTEMS.”
Modeling  and  Simulation, nstrument Society of
America. Vol. 20, Part 5. 1989, pp. 1865-1869.

15. Phan. M., Wei, Y., Horta, L. G.. Juang, J.-N.. and
Longman. R. W., "LEARNING CONTROL FOR
SLEWING OF A FLEXIBLE PANEL.” Dvnamics and
Control of Large Structures, Proceedings of the
Seventh VPI&SU/AIAA Symposium, L. Meirovitch,
Editor. May 1989, pp. 39-52.

16. Juang. J. N.. Horta. L. and Longman. R. W,
“SYSTEM IDENTIFICATION IN THE REPETITION
DOMAIN." Proceedings of thc 1989 AAS/AIAA
Astrodvnamics Conference. Stowe. VT. August 1989,



Advances in the Astronautical Sciences. American

Astronautical Society, Vol. 71, 1990.

17. Juang. J.-N.. Horta. L. G.. and Longman. R. W,
“INPUT/OUTPUT  SYSTEM  IDENTIFICATION:
LEARNING FROM REPEATED EXPERIMENTS.”

Chapter 5 of Mechanics and Control of Large Flexible
Structures, J. L. Junkins. Editor. Progress in

Astronautics and Acronautics. Vol 129, American
Institute of Aeronautics and Astronautics. Washington.
DC. 1990, pp. 87-99.

18, Phan. M., Juang. J.-N.. and Longman, R. W..
“INDIRECT REPETITIVE CONTROL FOR LINEAR
DISCRETE MULTIVARIABLE SYSTEMS.”
Proceedings of the 27th Annual Allerton Conference on
Communication,  Control, and  Computing. The
University of Illinois. Allerton House. Monticello.
Itiinois, September 1989. pp. 867-876.

19. Phan, M.. Juang. J.-N.. and Longman. R. W..
"RECENT DEVELOPMENTS IN LEARNING
CONTROL AND SYSTEM IDENTIFICATION FOR
ROBOTS AND STRUCTURES.” Dynamics of Ilexible
Structures  in Space. Proceedings of the First
International Confcrence. Cranficld. England. May
1990. C. L. Kirk, and J. L. Junkins. Editors.
Computational Mechanics Publications. Southampton.
Boston. and Springer-Verlag. New York. CO-
publishers. 1990, pp. 321-334.

20. Longman. R. W.. and Solcz. E. J.. "SMALL
GAIN ROBUSTNESS ISSUES IN THE P-
INTEGRATOR  REPETITIVE = CONTROLLER."

AIAA/AAS Astrodynamics Conference, 1 Collection of

Technical Papers, Part 2, Portland. Oregon, August
1990, pp. 537-551,

21. Chang, C.-K.. Longman. R. W.. and Phan. M..
“TECHNIQUES FOR IMPROVING TRANSIENTS IN
LEARNING CONTROL SYSTEMS.” .ldvances in the
Astronautical — Sciences.  American  Astronautical
Society. Vol. 76, 1992, Proceedings of the AAS/AIAA
Astrodynamics  Specialist  Confcrence,  Durango.
Colorado. August 1991.

22. Lee. S. C.. Longman, R. W.. and Phan, M.
“LINEAR DECENTRALIZED LEARNING
CONTROL.” Advances in the Astronautical Sciences.
American Astronautical Society. Vol. 76. 1992,
Proceedings of the AAS/AIAA  Astrodynamics
Specialist Conference. Durango. Colorado. August
1991.

23. Longman. R. W.. Lee, S. C.. and Phan, M..
“INDIRECT DECENTRALIZED LEARNING

. 10_

CONTROL.” Advances in the Astronautical Sciences,
American Astronautical Society, Proceedings of the
1992 AAS/AIAA  Spaceflight Mechanics Meeting,
Colorado Springs. Fcbruary 1992.

24, Longman. R, W.. Phan, M.. and Juang. J.-N.

“AN OVERVIEW OF A SEQUENCE OF RESEARCH
DEVELOPMENTS IN LEARNING AND

REPETITIVE CONTROL.” Procecdings of the First
Intcrnational Conference on Motion and Vibration
Control (MOVIC). Yokohama. Japan. Scptember 1992,

25. Arimoto.  S.. "INTRODUCTION: BRIEF
HISTORY OF DEVELOPMENT OF LEARNING
CONTROL IN ROBOTICS,” 1991 IEEE Conference
on Intelligent Control. Arlington. VA, August 1991,

26.  Uchivama. M.. "FORMULATION OF HIGH-
SPEED MOTION PATTERN OF A MECHANICAL
ARM BY TRIAL." Transactions of the Society for
Instrumentation and Control Engineers. Vol. 14, 1978,
pp. 706-712.

27.  Craig. J. J. "ADAPTIVE CONTROL OF
MANIPULATORS THROUGH REPEATED
TRIALS.” Proceedings of the American Control

Conference. San Dicgo, 1984, pp. 1566-1573.

28. Casalino, G.. and Bartolini. G.. "A LEARNING
PROCEDURE FOR THE CONTROL OF
MOVEMENTS OF ROBOTIC MANIPULATORS,”
TASTED  Svmposium  on Robaotics and  Automation.
Amsterdam. 1984, pp. 108-111.

29 Arimoto. S.. Kawamura, S.. and Miyazaki. F.
"BETTERING OPERATION OF ROBOTS BY
LEARNING.” Journal of Robotic Systems, Vol. 1. No.
2. 1984, pp. 123-140.



