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Abstract — This paper considers feedback error
learning neural networks for robot manipulator con-
trol. Feedback error learning proposed by Kawato
[2,3,5] is a useful learning control scheme, if non-
linear subsystems (or basis functions) consisting
of the robot dynamic equation are known exactly.
However, in practice, unmodeled uncertainties and
disturbances deteriorate the control performance.
Hence, we presents a robust feedback error learn-
ing scheme which add robustifying control signal
to overcome such effects. After the learning rule
is derived, the stability is analyzed using Lyapunov
method.

1. INTRODUCTION

Among the NNC schemes so far, feedback error learning
(FEL) has several useful advantages over others such as
no desired outputs of the neural network as the learning
signal, no error back-propagation through the plant 8],
simultaneous learning and control, etc. However, it also
has problems that it requires a prior: knowledge on the
robot dynamics model and the system stability. The
stability problem is essential in FEL, since the learning
signal extraction from the feedback controller becomes
meaningless, once the system trajectory starts diverging
or drifting away.

Thus, in this paper, we mainly focus on the prob-
lems of FEL and its countermeasures. The rest of the
paper is organized as follows: After briefly reviewing
some problems of FEL such as linear parameterization,
learning rule derivation, and stability in Section 2, we
present countermeasures of such problems in Section 3.
There, the neural network learning and control scheme
with guaranteed performance is proposed. Simulation
are carried out in Section 4. Finally, concluding com-
ments follow.

2. FEEDBACK ERROR LEARNING NEURAL
NETWORKS

Kawato et al. [2,3] and Miyamoto et al. [5] proposed a
neural network of the form

where the basis function, ¢(), is constructed using the
subsystems of robot dynamics. This equation means
that the robot system is parameterized with a signal
vector ¢ and a parameter matrix W. For example, con-
sider the two-link robot manipulator of the dynamic

Table 1: Basis functions and corresponding weights of each joint

Joint 1 Joint 2
1 ¢i(z) Wiy Way
1 "1.1 (ml + 77‘7.2)2? + mglz mztg
2 Gz m2£§ m2£g
3 q'l cos gz 2771,2£1£2 mllxtg
4 G2 cO8 g2 miéés 0
5 4¢3 sin gz 0 mal, ls
6 (jlljz sinqz “277’1.22122 v}
7 q% sin ¢z —molils 0
8 cos q; (m1 + ma2)gt, 0
9 | cos(q1 +q2) magls magla
equation:
T1 = [(ml + MQ)K? + mgﬁg -+ 2m2Z1£2 cos qZ]él
+ [mals + my €14, cos g2]G2
— ma1£2(241G2 + ¢3) sin g2
+ {my + mg) gl cosq;
+ mp gl cos(qy + g2) (2)
T2 = [mﬂ% + my €1 £y cos g2] ¢

+ mpl3ds + maly €247 sin g2

+ magls cos(q; + q2). (3)
A possible set of basis functions (or subsystems) for
each joint can be built as shown in Table 1.

Assuming the parameterized robot model, they ap-
plied joint torque using feedback PD controller, 7.,
plus neural network controller, 7,,,,:

T="T.p + Tnn (4)
where 7., = Kpe + K,é and 7., = W e (Fig. 1). The
weight of the neural network is updated by

Wiy =N Top,  $5s (5)
or in matrix form

WT=ng¢rl, (6)

where 7 is the learning rate. This learning rule is called
as feedback error learning to emphasize the use of feed-
back torque as the learning signal [2,3]. It can be under-
stood that the learning rule (5) minimizes the following
cost function

1
E= Sl = rmnll?, 7)
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Fig. 1. Feedback error learning neural network control

because the gradient of a weight is written as

SE OTans

= _(T - Tnn)i aw,']' = " Tep, ¢J" (8)

aw,-j

They applied this learning rule to robot manipulator
control and reported that this had worked successfully
for trajectory tracking control. However, there are sev-
eral limitations of neural network control using feed-
back error learning. First, it is not robust under un-
structured uncertainties such as modeling error or dis-
turbance. The subsystem consisting of robot dynamics
should be known a priori for the system to be written
linearly in parameters as in (1). For example, the two-
link robot manipulator is controlled well if all of ¢;’s
in Table. 1 are known, but the control performance is
degraded seriously even ¢g only is omitted [4]. Second,
any stability analysis including neural network learning
is not given in original feedback error learning. Hence,
we propose robust feedback error learning to overcome
the indicated limitations.

3. ROBUST FEEDBACK ERROR LEARNING

Consider a general n-dof robot manipulator of

M(q)g+ Clg,d)d +9(q) + f(g) =7 +d(t) (9)

where g(g) is the gravity vector, f(q) is the friction

vector containing viscous and Coulomb terms, d(t) is

the disturbance, and 7 is the input torque vector.
Now, apply

T=Tpp T Tan + 7r. (10)

Then, the closed-loop filtered error dynamics is repre-
sented as

Ms=—-K_ s—Cs+h—r1,, — 1, (11)

where h = M7 + C7 + g + f — d. Assume the function
h can be constructed by the neural network as

h :W¢(q1 q.) 7',7':) +€(q1 q; ":1 'Fa d) (12)

where ¢(-) represents the function estimation error due
to modeling error and disturbance. The bound of ¢ is

dependent on the choice of ¢. If all the subsystems
consisting of the robot dynamics are incorporated in ¢,
then theoretically the bound can be ||¢|| < ||d||. How-
ever, if some subsystems are unmodeled and omitted
in ¢, then the bound of ¢ will increase as much as the
uncertainty. Here we assume the function ¢ is chosen
reasonably so that for a given ¢, there exist a neural
network weight matrix W satisfying

el < plg, 4, 7,7, d), (13)

which means the estimation error is bounded by a func-
tion, p(:). As shown in [1], the physical properties of
the robot manipulator can be used to show that the
estimate error bound, p, can be represented as

p=ao +aille] + azlle|? = Ya, (14)

where e = [eT,¢T]T, Y = [1,]|e]|,|e||?]7, and a =
(@0, a1, a2]T with positive bounding constants a;’s. The
bound is not necessarily to be known since it will be es-
timated using §:

p=do + aile|| + az|le}l* = Ya. (15)
The difference a and & is defined as

a=a-a. - (16)
The neural network controller provides a control in-
put using the current estimated weight W:

Tan = W¢ (17)

The weight W is updated using the learning rule pro-
vided in the following theorem. With the ideal weight
W in (12), define the weight estimation error as

W=w-W. (18)

Now we are ready to derive the learning rule of the
neural network weight and robust control law to over-
come the uncertainty.

Theorem 1 Let the desired trajectory qg,qq,da be
bounded and the estimation error is bounded as (13).
Take the control torque for the robot manipulator as
(10) with v, , = K, 5,7, = Wé, and

58
T, = . sl
r{p%

where ® = —a®, ®(0) > 0 and o 1s a positive constant.
The neural network weight 1s updated by the learning
rule:

of Bljsl| > @
of Bllsll < @

(19)

WT =T ¢sT (20)

where I' > 0 15 a constant matriz determining the learn-
ing rate. The bounding estimate 1s updated by

& =yY7|s|l (21)

Then the tracking errors, e and ¢, converge to zero
asymptotically, while all other signals including W and
B, etc. remain bounded.

198



Proof: Define the Lyapunov function candidate

v o= %STMs+eATK e+~tr(W ~upT)
Ly . @
tRa vy At — (22)

Differentiating the above, substituting (11) and (12),
and using (20) yields

R | &

V=-eTQe+sT(e—r)—aly ta+—, (23)
where eT = [T = diag[ATK_ A, K_]. The first
term is negative semi-definite since Q is positive defi-
nite. Now we have

T T]T

V<-eTQe—d+ Alls| — T, (24)

where (21) is used. The last three terms are considered
next. If j||s|| > ® then 7, = ps/| s||, and we have

- ®+ p|sf —sTr,=-®<o. (25)
If ljs|| < ® then 7. = p%s/®, and we have
a [P .

=@+ pllsll - 5" = — = (Blsll — @)° - Alls|| < 0 (26)
since p||s]| — ® < 0. Therefore, we obtain

V < —eT Qe. (27)

We immediately have from the above that e, s, &, and
W are bounded and e,€,5 € Lp. This implies that
e— 0ast— oo. Moreover, it is obvious from (19) that
7|l < 5. Therefore from (11) we see that $ is bounded,
which implies ¢ — 0.

a

Note that the above theorem states that the uncer-
tainty which can not be estimated by the neural net-
work can be overcome by the incorporated robust con-
trol term. It allows us a design trade-off between net-
work complexity and robust control. In fact, it allows
the possibility of selecting a simplified neural network
structure based on the known basis function ¢() and
compensating the increased magnitude of p using the
robust control term.

Note that the bounding estimate is likely to drift
in the presence of unmodeled dynamics and distur-
bances and become unbounded since & is always pos-
itive in (21). In order to guarantees that & remains
bounded we need to modify the update law (21) using
o-modification as

i =~Y7T|s| - oa. (28)

Now, as a special case, consider the estimate error is
bounded by a constant, that is,

llell € pe (= const.). (29)

Then, feedback error learning neural networks can pro-
vide some interesting results without a robust control
term. The following theorem states such results.

Theorem 2 Let the desired trajectory qq,qa, Gy be
bounded and the estimation error bound be a constant,

e., |lell < pe. Take the control torque for the robot ma-
nipulator, 7 = 7, + 7Tn, with 1., = K, 5, Tpp = W¢.
The neural network weight is updated by

WT =T ¢sT (30)
Then the fil-

tered tracking error s(t) is uniform ultimately bounded

(UUB) with a bound
sl < pe/ksp, (31)

15 the mimimum singular value of K

where T' > 0 15 a constant matriz.

where k,

Proof: Define the Lyapunov function candidate
1 1 .- -
V = ESTMS + Etr(WI‘“le). (32)
Differentiating and substituting (11) yields

V=-sTK,s+ tr[W(F_le +¢sT)] +sTe.  (33)

Using (30), we have
V = 4T K, s+ sTe
< —kpllsl® + peflsll. (34)

Therefore, V < 0 as long as (31) since p, is a constant.
O

Note that boundedness of filtered tracking error s(t)
implies

liell < Isll/Amin < pe/(kp - Amin) (35)

where Aniq is the smallest element of A. Hence, we can
guarantee that the tracking error is bounded by a ar-
bitrary small value properly chosen using the constant
matrices K, and A. However, such a property is guar-
anteed only when the function p is constant. In case of
nonconstant p we generally need some additional con-
trol inputs such as robust control terms used in Theo-
rem 1.

Theorem 2 states how much the feedback error learn-
ing neural network control can do. That is, original
feedback error learning is useful only in the case of con-
stant estimate error.

4. SIMULATION

The performance of the proposed robust feedback error
learning neural network control of Theorem 1 is verified
through the simulation results of the two-link manipu-
lator. The desired trajectory is the circular one given

by

ey

[ z4 ] _ [ 1.0 + 0.2sin( 2% ¢) (36)

Ya | 0.4+0.2cos(—t)
with T = 2sec.

In order to show the robustness of the proposed
controller, the friction and disturbance which are not
considered in the simulation of feedback error learning
neural network control are now included in the follow-
ing simulations (Fig. 2 and Fig. 3). Fig. 2 depicts the
tracking performance. Fig. 3 depicts the control input
applied to the first joint.
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5. CONCLUSION

We have presented here the robust feedback error learn-
ing neural network control and have shown that if the
uncertainty of the robot dynamics is linearly parame-
terized, then the learning rule of the neural network can
be derived directly from the Lyapunov analysis. Thus
the closed loop stability can be guaranteed without the
passivity properties of the network. Furthermore, the
uncertainty which can not be estimated by the neural
network can be overcome by the incorporated robust
controller.
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Fig. 2: Tracking performances when Theorem 1 is applied: Solid

line (z directional error) and dash line (y directional error).
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Fig. 3: Control inputs for joint 1: 7, (solid line), rnn (dash

line), and 7, (dash-dot line).
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