This study aims to develop and implement extra-curricular program applying project-based learning (PBL) and to find out its effectiveness. The research was conducted from March 2021 to December 2021 according to the ADDIE model. Surveys, t-test and descriptive statistics were also conducted. The results of the study are as follows. First, project-based learning was applied to the extra-curricular program by reflecting the characteristics of students of University A and the requirements of the person in charge of the teaching and learning center. Second, project tasks related to education of universities were proposed. Third, the programs were designed as three common courses and four consulting courses. Fourth, the program was conducted with 32 students for two months. Fifth, the post-test results of problem-solving skills rose to 0.9 points compared to the pre-test but there was no significant difference, while the post-test results of communication skills were 0.5 points lower than before and statistically significant. Sixth, the satisfaction survey result was high with a rating of 4.59. Lastly, educational implications are also discussed.
목적: 이러닝 활성화를 위해 여러 방식의 LMS와 접목하여 연동 가능한 최적의 에듀테크 교수학습 플랫폼 모형을 설계한 연구이다. 방법: 이를 위해 사이버대학교와 일반대학교의 4차 산업기술에서 활용 가능한 이러닝 시스템을 횡단적으로 내용분석 하였다. 결과: 사이버대학교에서는 전적으로 LMS에 의존하였고, 일반대학교에서는 LMS 이외에도 구글 클래스룸, 줌 비디오 커뮤니케이션, 유튜브 등 교수별 각기 다른 에듀테크 방법을 보완 활용하고 있어, LMS에 구글 및 유튜브 등 메타데이터를 공유할 수 있도록 최소한의 알고리즘 매핑을 제공하는 것이 에듀테크 교수학습 플랫폼 모형에 유의미할 것으로 보았다. 이에 본 연구는 LMS 기반 에듀테크 교수학습 플랫폼 모형을 통해 교수법 향상과 학업성취도 향상에 기여할 것으로 사료된다.
The purpose of this study is to develop a teaching-learning model of convergence project based on team teaching. Based on development research methodology which explored a university case, the teaching-learning model was developed including three phases such as preparation, planning, and implementation & evaluation. The preparation phase has three steps as follows: to organize team teaching faculty; to develop convergence projects cooperated by industry and university; and to design instructions based on supporting convergence projects. The last step of preparation phase consists of five design activities of: (1) instructions and teaching contents; (2) communication channel among faculty members; (3) feedback system on students' performance; (4) tools to support learners' activity; and (5) evaluation system. The planning phase has two steps to analyze learners and to introduce and modify instruction and themes of convergence projects. The implementation & evaluation phase includes five steps as bellow: (1) to organize project teams and match teams with faculty members; (2) to do team building and assign duties to students of a team; (3) to provide instruction and consulting to teams; (4) to help teams to conduct projects through creative problem solving; and (5) to design mid-term/final presentation and evaluation. Lastly, the research implications and limitations were discussed for future studies.
A question answering (QA) system can be built using multiple QA modules that can individually serve as a QA system in and of themselves. This paper proposes a learnable, strategy-driven QA model that aims at enhancing both efficiency and effectiveness. A strategy is learned using a learning-based classification algorithm that determines the sequence of QA modules to be invoked and decides when to stop invoking additional modules. The learned strategy invokes the most suitable QA module for a given question and attempts to verify the answer by consulting other modules until the level of confidence reaches a threshold. In our experiments, our strategy learning approach obtained improvement over a simple routing approach by 10.5% in effectiveness and 27.2% in efficiency.
Text classification is a challenging task, especially when dealing with a huge amount of text data. The performance of a classification model can be varied depending on what type of words contained in the document corpus and what type of features generated for classification. Aside from proposing a new modified version of the existing algorithm or creating a new algorithm, we attempt to modify the use of data. The classifier performance is usually affected by the quality of learning data as the classifier is built based on these training data. We assume that the data from different domains might have different characteristics of noise, which can be utilized in the process of learning the classifier. Therefore, we attempt to enhance the robustness of the classifier by injecting the heterogeneous data artificially into the learning process in order to improve the classification accuracy. Semi-supervised approach was applied for utilizing the heterogeneous data in the process of learning the document classifier. However, the performance of document classifier might be degraded by the unlabeled data. Therefore, we further proposed an algorithm to extract only the documents that contribute to the accuracy improvement of the classifier.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권7호
/
pp.1774-1794
/
2024
In the field of environmental sensing, it is necessary to develop radio planning techniques for the next generation Internet of Things (IoT) networks over mixed terrains. Such techniques are needed for smart remote monitoring of utility supplies, with links situated close to but out of range of cellular networks. In this paper, a three-dimension (3-D) geometric optimization algorithm is proposed, considering the positions of edge IoT devices and antenna coupling factors. Firstly, a multi-level single linkage (MLSL) iteration method, based on geometric objectives, is derived to evaluate the data rates over ISM 915 MHz channels, utilizing optimized power-distance profiles of continuous waves. Subsequently, a federated learning (FL) data selection algorithm is designed based on the 3-D geometric positions. Finally, a measurement example is taken in a meadow biome of the Mexican Colima district, which is prone to fluvial floods. The empirical path loss model has been enhanced, demonstrating the accuracy of the proposed optimization algorithm as well as the possibility of further prediction work.
The purpose of this study is to present a practical class design model that applies the problem-based learning (PBL) method to the subject of home economics. To begin with, a specific class model example was developed by conducting thorough document research and expert consulting. Two modules, named "Click! Global Leisure Environment" and "Happy Leisure Product Launching" were presented as the PBL questions. The case study focused upon in this research is an elective course called "Leisure Culture and Life Management". The 21 students enrolled in this course were considered in this study. Two teaching methods, namely a face-to-face teaching method and a web-based system "Snowboard" teaching method, were used to run the class. The research results are as follows: first, theoretical research and program development and demonstration were practiced with five different age groups: childhood, adolescence, university student, middle age, and senescence. Then, selfevaluation, peer evaluation, and group evaluation were conducted to motivate the students. Finally, a class evaluation was conducted by questioning the lecturer, who ranked well, scoring higher than or equal to 4.0 points out of 5.0 on all the questions. Through the PBL method, students showed an improved study attitude with more proactive participation in the class, they strengthened their communication skills and created a synergy with their team members. This study has significant meaning because it is the first research to apply the PBL method to home economics. Therefore, we expect other curricula to apply PBL and fully utilize this teaching method as well in the future.
In this paper, we propose an improved model to provide users with a better long-term prediction of waterworks operation data. The existing prediction models have been studied in various types of models such as multiple linear regression model while considering time, days and seasonal characteristics. But the existing model shows the rate of prediction for demand fluctuation and long-term prediction is insufficient. Particularly in the deep running model, the long-short-term memory (LSTM) model has been applied to predict data of water purification plant because its time series prediction is highly reliable. However, it is necessary to reflect the correlation among various related factors, and a supplementary model is needed to improve the long-term predictability. In this paper, convolutional neural network (CNN) model is introduced to select various input variables that have a necessary correlation and to improve long term prediction rate, thus increasing the prediction rate through the LSTM predictive value and the combined structure. In addition, a multiple linear regression model is applied to compile the predicted data of CNN and LSTM, which then confirms the data as the final predicted outcome.
본 연구는 조직에서 지식의 습득이 창의성에 미치는 영향을 확인하고자 하였다. 지식의 습득과 관련된 변수 중 학습지향성을 선정하여 이를 통해 구성원이 창의성을 발현하는 과정에 대해 분석하였다. 구체적으로 학습지향성, 전문지식, 창의적 사고능력의 매개 과정과 이들 간의 관계에서 동기의 조절효과를 실증분석하였다. 이를 위해 문헌연구를 통해 연구모형 및 가설을 설정하였고, 대구·경북에서 제조업 종사자을 대상으로 296부의 설문지를 배포·회수하여 가설을 검증하였다. 계층적 회귀분석을 통한 검증 결과, 학습지향성은 창의적사고능력에 긍정적인 영향을 미치고 전문지식은 매개효과가 있는 것을 확인하였다. 그리고 이러한 매개 관계에서 동기의 조절효과를 확인하였다. 이러한 연구결과는 창의성의 발현에 대해 구성요소의 관계를 보다 상세하게 확인하고, 학습지향성이 미치는 영향에 대해 규명함으로써 시사성이 있다고 할 수 있다. 즉, 지식의 함양을 통해 창의성이 발현되는 과정을 설명함으로써 조직 관리 방안에 가이드라인을 제공할 수 있을 것이다.
기술력 기반의 중소벤처기업에 대한 기술금융 지원을 위해 정부는 2014년 7월부터 기술보증기금 및 일정 자격을 갖춘 민간 기술신용평가사에게 일종의 기술력 등급평가인 기술신용평가를 실시하여 은행의 여신에 활용토록 하였다. 본 논문에서는 최근까지의 기술신용평가 현황 및 한국신용정보원에서 축적하고 있는 기술평가 관련 가용 지표들에 대한 선행 연구를 개략적으로 살펴본 후 기술평가등급점수에 유의적인 영향을 미치는 지표(indicator)를 통상적인 다중회귀기법으로 탐색할 것이다. 본 논문의 관심 대상인 지표 별 등급 영향도와 모형의 적합도는 대표적인 기계학습 분류기(classifier)인 일반화가속모형(Generalized Boosting Model; GBM)을 적용하여 분석하였는 바, 주요 지표를 독립변수(feature)로 투입하여 지표의 상대적 중요성 및 분류 정확도를 산출하였다. 분석결과 회귀모형과 기계학습 모형 간 지표별 상대적인 중요도는 크게 차이나지 않는 것으로 분석되었으나, GBM 모형의 경우 회귀모형에 비해서 이노비즈인증, 연구소 및 연구개발전담부서 보유, 특허등록건수, 벤처확인 지표 등 기술개발역량이 상대적으로 기술등급에 더 큰 영향을 미치는 것으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.