• Title/Summary/Keyword: leaching and recovery

Search Result 206, Processing Time 0.023 seconds

Chemical Leaching of Cobalt and Lithium from the Cathode Active Materials of Spent Lithium-ion Batteries by Organic Acid (폐(廢)리튬이온전지(電池) 양극활물질(陽極活物質)에서 유기산(有機廳)을 이용(利用)한 코발트 및 리튬의 화학적(化學的) 침출(浸出))

  • Ahn, Jae-Woo;Ahn, Hyo-Jin
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • Environmental friendly leaching process for the recovery of cobalt and lithium from the $LiCoO_2$ was investigated by organic acids as a leaching reagent. The experimental parameters, such as organic acid type, concentrations of leachant and hydrogen peroxide, reaction time and temperature as well as the pulp density were tested to obtain the most effective conditions for the leaching of cobalt and lithium. The results showed that the latic acid was the most effective leaching reagent for cobalt and lithium among the organic acids and was reached about 99.9% of leaching percentage respectively. With the increase of the concentration of citric acid, hydrogen peroxide and temperature, the leaching rate of cobalt and lithium increased. But the increase of pulp density decreased the leaching rate of cobalt and lithium.

A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode (과황산계 산화제에 따른 폐LiFePO4 양극재에서 리튬의 침출 효과와 선택적 회수에 대한 연구)

  • Kim, Hee-Seon;Kim, Dae-Weon;Jang, Dae-Hwan;Kim, Boram;Jin, Yun-Ho;Chae, Byung-Man;Lee, Sang-Woo
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.40-48
    • /
    • 2022
  • In waste lithium iron phosphate (LFP) batteries, the cathode material contains approximately 4% lithium. Recycling the constituent elements of batteries is important for resource circulation and for mitigating the environmental pollution. Li contained in the waste LFP cathode powder was selectively leached using persulfate-based oxidizing agents, such as sodium persulfate, potassium persulfate, and ammonium persulfate. Leaching efficiency and waste LFP powder properties were compared and analyzed. Pulp density was used as a variable during leaching, which was performed for 3 h under each condition. The leaching efficiency was calculated using the inductively coupled plasma (ICP) analysis of the leachate. All types of persulfate-based oxidizing agents used in this study showed a Li leaching efficiency over 92%. In particular, when leaching was performed using (NH4)2S2O8, the highest Li leaching percentage of 93.3% was observed, under the conditions of 50 g/L pulp density and an oxidizing agent concentration of 1.1 molar ratio.

A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process (Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구)

  • Sung-Ho Joo;Dong Ju Shin;Dongseok Lee;Shun Myung Shin
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.42-49
    • /
    • 2023
  • The glass ceramic secondary resource containing Li-Al-Si is used in inductor, fireproof glass, and transparent cookware and accounts for 14% of the total consumption of Li, which is the second most widely used after Li-ion batteries. Therefore, new Li resources should be explored when the demand for Li is exploding, and extensive research on Li recovery is needed. Herein, we recovered Li from fireproof Li-Al-Si glass ceramic, which is a new secondary resource containing Li. The fireproof glass among all Li-Al-Si glass ceramics was used as raw material that contained 1.5% Li, 9.4% Al, and 28.9% Si. The process for recovering Li from the fireproof glass was divided into two parts: (1) calcium salt roasting and (2) water leaching. In calcium salt roasting, a sample of fireproof glass was crushed and ground below 325 mesh. The leaching efficiency was compared based on the presence or absence of heat treatment of the fireproof glass. Moreover, the leaching rates based on the input ratios of calcium salt, Li-Al-Si glass, and ceramics and the leaching process based on calcium salt roasting temperatures were compared. In water leaching, the leaching and recovery rates of Li based on different temperatures, times, solid-liquid ratios, and number of continuous leaching stages were compared. The results revealed that fireproof glass ceramics containing Li-Al-Si should be heat treated to change phase to beta-type spodumene. CaCO3 salt should be added at a ratio of 6:1 with glass ceramics containing Li-Al-Si, and then leached 4 times or more to achieve a recovery efficiency of Li over 98% from a solution containing 200 mg/L of Li.

Recovery of Cobalt from Waste Cathode Active Material Using Organic Acid (폐 리튬이온 배터리 양극으로부터 유기산을 이용한 코발트 회수)

  • Moon, Ji-Hoon;Ahn, J.E.;Kim, Hyun-Jong;Sohn, S.H.;Lee, H.W.;Kim, H.S.
    • Applied Chemistry
    • /
    • v.16 no.1
    • /
    • pp.73-76
    • /
    • 2012
  • Due to the developments of communications equipment and electronic devices, lithium ion secondary battery usage is growing. Along with demand increasing, the amount of scrap has been steadily increasing. In this study, method of cobalt recovery using organic eco-friendly is proposed. Sulfuric acid, Malic acid, Citric acid at reflux device had good cobalt leaching efficiency. And Sulfuric acid, Malic acid at the autoclave increased cobalt leaching efficiency.

Enhanced extraction of copper and nickel based on the Egyptian Abu Swayeil copper ore

  • Somia T. Mohamed;Abeer A. Emam;Wael M. Fathy;Amany R. Salem;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.63-78
    • /
    • 2024
  • The continuous increasing of the global demand of copper and nickel metals raises the interest in developing alternative technologies to produce them from copper sulfide ore. Also, in line with Egypt's vision 2030 for achieving the sustainable socioeconomic development which aims at developing alternative and eco-friendly technologies for processing the Egyptian ores to produce these strategic products instead of its importing. These metals enhance the advanced electrical and electronic industries. The current work aims at investigating the recovery of copper and nickel from Abu Swayeil copper ore using pug leaching technique by sulfuric acid. The factors affecting the pug leaching process including the sulfuric acid concentration, leaching time and temperature have been investigated. The copper ore sample was characterized chemically using X-ray fluorescence (XRF) and scanning electron microscope (SEM-EDX). A response surface methodology develops a quadratic model that expects the nickel and copper leaching effectiveness as a function of three controlling factors involved in the procedure of leaching was also investigated. The obtained results showed that the maximum dissolution efficiency of Ni and Cu are 99.06 % and 95.30%, respectively which was obtained at the following conditions: 15 % H2SO4 acid concentration for 6 hr. at 250 ℃. The dissolution kinetics of nickel and copper that were examined according to heterogeneous model, indicated that the dissolution rates were controlled by surface chemical process during the pug leaching. The activation energy of copper and nickel dissolution were 26.79 kJ.mol-1 and 38.078 kJ.mol-1 respectively; and the surface chemical was proposed as the leaching rate-controlling step.

Gold Recovery from Geumsan Concentrate Using Microwave-nitric Acid Leaching and Lead-fire Assay (마이크로웨이브-질산용출과 납-시금법을 이용한 금산정광으로부터 금 회수)

  • Lee, Jong-Ju;On, Hyun-Sung;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.113-126
    • /
    • 2019
  • This study aimed to effectively dissolve sulfide minerals through microwave-nitric acid leaching of invisible gold concentrate and then recover gold from the solid-residue with fire assay. For the purposes, this study conducted microwave-nitric acid leaching experiments to examine nitric acid concentration, time of microwave leaching, and sample addition effect. As results of the experiments, this study discovered that the weight loss rate of solid-residue increased as nitric acid concentration and microwave leaching time increased while weight loss rate decreased as sample addition increased. In an XRD analysis with solid-residue, it was discovered that pyrite completely disappeared when the nitric acid concentrate was 6 M and the microwave leaching time was 18 minutes. When a fire assay was carried out with solid-residue, gold particles with more content were recovered as nitric acid concentration and microwave leaching time increased whereas gold particles with more gold content were recovered as the sample addition decreased.

A Study on the Recovery of the Valuable Metals from VRDS Spent Catalyst (VRDS 폐촉매로부터 유가금속 회수 연구)

  • 장희동;이희선;박형규;이후인;김준수
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.19-25
    • /
    • 1995
  • A Study on the recovery of the valuable metals(Vanadium Molybdenium) was carried out using spent catalysts originated from desulfurizing process of oil refinery. Experiments consisted of pre-roasting for Sulfur and Carbon removal, soda roasting and leaching for the extraction of valuable metals, and selective precipitation of Vanadium and Molybdenium. Effects of temperature and time in roasting for Sulfur removal, of $Na_2CO_3$ concentrations in soda roasting, and of pulp density, temperature and time in leaching were investigated for the recovery of Vanadium and Molybdenium. A optimum condition having over 85% in yield of Vanadium and Molybdenium was found. In the selective precipitation, more than 98% of Vanadium and Molybdenium were obtained by the variation of pH and concentration of additives.

  • PDF

EAF Dust Recycling Technology in Japan

  • Sasamoto, Hirohiko;Furukawa, Takeshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.9-18
    • /
    • 2001
  • 1. EAF Dust in Japan - Generation and Characteristics. The quantity of dust generated from EAF shops in Japan was estimated to be 520,000 tons/year in 1999. Extremely fine dust (or fume) is formed in the EAF by metal vaporization. Its characteristics such as chemical compositions, phases, particle size, leaching of heavy metal are mentioned. 2. EAF Dust Treatment Methods in Japan. In 1999, 61% of EAF dust was treated by regional zinc recovery processing routes, 25% went to landfill disposal, 4% was reused as cement material, and 10% was treated by on-site processing routes. The problems of EAF dust treatment methods in Japan are: (1) very high treatment cost, and (2) heavy environmental load (leaching of heavy metal, emission of dioxins, depletion of disposal sites, etc). It has been much hoped for that new dust management technology would be developed. 3. New technology of EAF dust treatment in Japan. In Japan, some new technologies of EAF dust treatment have been developed, and some others are in the developing stages. Following five processes are mentioned:. (1) Smelting reduction process by Kawasaki Steel, (2) DSM process by Daido Steel, (3) VHR process by Aichi Steel, (4) On-site dust direct recycling technology, and (5) Process technology of direct separation and recovery of iron and zinc metals contained in high temperature EAF off gas by the Japan Research and Development Center fur Metals.

  • PDF

Reprocessing of fluorination ash surrogate in the CARBOFLUOREX process

  • Boyarintsev, Alexander V.;Stepanov, Sergei I.;Chekmarev, Alexander M.;Tsivadze, Aslan Yu.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.109-114
    • /
    • 2020
  • This work presents the results of laboratory scale tests of the CARBOFLUOREX (CARBOnate FLUORide EXtraction) process - a novel technology for the recovery of U and Pu from the solid fluorides residue (fluorination ash) of Fluoride Volatility Method (FVM) reprocessing of spent nuclear fuel (SNF). To study the oxidative leaching of U from the fluorination ash (FA) by Na2CO3 or Na2CO3-H2O2 solutions followed by solvent extraction by methyltrioctylammonium carbonate in toluene and purification of U from the fission products (FPs) impurities we used a surrogate of FA consisting of UF4 or UO2F2, and FPs fluorides with stable isotopes of Ce, Zr, Sr, Ba, Cs, Fe, Cr, Ni, La, Nd, Pr, Sm. Purification factors of U from impurities at the solvent extraction refining stage reached the values of 104-105, and up to 106 upon the completion of the processing cycle. Obtained results showed a high efficiency of the CARBOFLUOREX process for recovery and separating of U from FPs contained in FA, which allows completing of the FVM cycle with recovery of U and Pu from hardly processed FA.

Extraction of Pure Si from an Al-Si Alloy Melt during Solidification by Centrifugal Force (Al-Si 합금 융체로부터 순 실리콘의 원심분리 추출)

  • Cho, Ju-Young;Kang, Bok-Hyun;Kim, Ki-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.874-881
    • /
    • 2011
  • The present study describes a new technique to extract the primary silicon from an Al-Si alloy melt using centrifugal force during its solidification. The primary silicon was separated from an Al-50 wt.%Si alloy by centrifugal force in the form of a foam, which facilitated subsequent acid leaching to extract the pure silicon due to its wide surface area. The foam recovery after centrifugal separation was decreased as centrifugal acceleration was increased. The final recovery after acid leaching became closer to the solid fraction of the alloy, which was calculated from the Al-Si binary phase diagram, with increasing centrifugal acceleration due to the effective removal of the attached Al on the foam. The purity of the primary silicon obtained by the centrifugal separation method was over 99.99%, with only aluminum being also present.