DOI QR코드

DOI QR Code

Chemical Leaching of Cobalt and Lithium from the Cathode Active Materials of Spent Lithium-ion Batteries by Organic Acid

폐(廢)리튬이온전지(電池) 양극활물질(陽極活物質)에서 유기산(有機廳)을 이용(利用)한 코발트 및 리튬의 화학적(化學的) 침출(浸出)

  • Ahn, Jae-Woo (Department of Advanced materials & Science, Daejin University) ;
  • Ahn, Hyo-Jin (Department of Advanced materials & Science, Daejin University)
  • Received : 2011.07.04
  • Accepted : 2011.08.09
  • Published : 2011.08.31

Abstract

Environmental friendly leaching process for the recovery of cobalt and lithium from the $LiCoO_2$ was investigated by organic acids as a leaching reagent. The experimental parameters, such as organic acid type, concentrations of leachant and hydrogen peroxide, reaction time and temperature as well as the pulp density were tested to obtain the most effective conditions for the leaching of cobalt and lithium. The results showed that the latic acid was the most effective leaching reagent for cobalt and lithium among the organic acids and was reached about 99.9% of leaching percentage respectively. With the increase of the concentration of citric acid, hydrogen peroxide and temperature, the leaching rate of cobalt and lithium increased. But the increase of pulp density decreased the leaching rate of cobalt and lithium.

페리튬이온전지 양극활물질인 $LiCoO_2$로부터 코발트와 리튬을 회수하기 위한 기초 연구로 환경친화적인 유기산을 이용하여 코발트와 리튬의 침출에 관한 연구를 실시하였다. 주요 실험 변수로는 유기산 종류 및 농도, 과산화수소 농도, 반응 시간 및 온도 그리고 고액농도비 등 코발트와 리튬의 침출에 영향을 미칠 수 있는 인자들에 대하여 고찰하여 최적 조건을 얻고자 하였다. 실험 결과 사용한 유기산중에서 Latic acid가 코발트 및 리튬의 침출율이 99.9%로 가장 우수 하였다. 한편, 구연산을 이용하여 창출 실험한 결과에서 과산화수소의 농도, citric acid의 농도 및 반응온도가 증가함에 따라 코발트 및 리튬의 침출율이 증가하였다. 그러나 고액농도비가 증가함에 따라 침출율은 감소하는 경향을 보였다.

Keywords

References

  1. J. Xu, H.R. Thomas, R.W. Francis, et al., 2008: A review of processes and technologies for the recycling of lothiumion secondary batteries, J, Power sources, 177, 512-527. https://doi.org/10.1016/j.jpowsour.2007.11.074
  2. Dorella, G, Mansur, M., 2007 : A study of the separation of cobalt from spent Li-ion battery residues, J. Power sources, 170, 210-215. https://doi.org/10.1016/j.jpowsour.2007.04.025
  3. Swain, B., Jeong., Lee, J.C. et al., 2007: Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium batteries, J. Power sources, 167, 536-544. https://doi.org/10.1016/j.jpowsour.2007.02.046
  4. Zhang, W.P., Yokoyama, T., Itabashi, O., et al., 1998: Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47, 259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  5. Shin, S.M., Kim, N.H., Sohn, J. S., 2005: Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 79, 172-181. https://doi.org/10.1016/j.hydromet.2005.06.004
  6. Lee, C.K., Rhee, K.I., 2003: Reductive leaching of cathodic active materials from lithium ion battery waste, Hydrometallurgy, 68, 5-10. https://doi.org/10.1016/S0304-386X(02)00167-6
  7. LiLi, Jing Ge, Feng Wu, Renjie Chen, Shi Chen, Borong Wu, 2010: Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant, J. of Hazardous Materials, 176, 288-293. https://doi.org/10.1016/j.jhazmat.2009.11.026
  8. LiLi, Jing Ge, Renjie Chen, Feng Wu, Shi Chen, Xiaoxiao Zhang, 2010: Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management, 30, 2615-2621. https://doi.org/10.1016/j.wasman.2010.08.008
  9. 이철경, 양동효, 김낙형, 2002: Oxalic용액에서 $LiCoO_2$의 선택침출, 자원리싸이클링, 11(3), 10-16.
  10. Catherine N. Mulligan, Mahtab Kamali, Bernard F. Gibbs, 2004: Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger, J. of Hazardous Materials, 110, 77-84. https://doi.org/10.1016/j.jhazmat.2004.02.040
  11. 안재우, 정진기, 이재천, 김동진, 2005: 곰팡이균(Aspergillus niger)을 이용한 전자스크랩중 유가금속의 미생물 침출 연구, 자원리싸이클링, 14(5), 24-31.
  12. Fozia Anjum, Haq Nawaz Bhatti, Muhammad Asgher, Muhammad Shahid, 2010: Leaching of metal ions from black shale by organic acids produced by Aspergillus niger, Applied Clay Science, 47, 356-361. https://doi.org/10.1016/j.clay.2009.11.052
  13. Brierley, J.A. Brierley, C.L. 2001: Present and future commercial applications of biohydrometallurgy, Hydrometallurgy, 59, 233-239. https://doi.org/10.1016/S0304-386X(00)00162-6
  14. Geoffrey S. Simate, Sehliselo Ndlovu, Lubinda F. Walubita, 2010: The fungal and chemolithotrophic leaching of nickel laterites - Challenges and opportunities, Hydrometallurgy, 10, 1-8.
  15. Orquidea Coto, Fedrico Galizia, Ianeya Hernandez, et al., 2008 : Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids, Hydrometallurgy, 94, 18-22. https://doi.org/10.1016/j.hydromet.2008.05.017
  16. Khin Moh Moh Aung, Yen-Peng Ting, 2005: Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger, Journal of Biotechmology, 116, 159-170.

Cited by

  1. Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid vol.23, pp.4, 2014, https://doi.org/10.7844/kirr.2014.23.4.21
  2. Preparation of Cathode Materials for Lithium Rechargeable Batteries using Transition Metals Recycled from Li(Ni1-x-yCoxMny)O2Secondary Battery Scraps vol.21, pp.2, 2014, https://doi.org/10.4150/KPMI.2014.21.2.131
  3. A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis vol.57, pp.10, 2011, https://doi.org/10.3365/kjmm.2019.57.10.656