• Title/Summary/Keyword: leaching and recovery

Search Result 209, Processing Time 0.021 seconds

Characteristics of phosphorus leaching from sewage sludge ash by acid and alkali (산과 알카리에 의한 슬러지 소각재의 인 침출 특성)

  • Battsooj, Munkhjargal;Lee, Minsu;Kim, Dong-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.571-577
    • /
    • 2016
  • Phosphorus is an essential and irreplaceable element for all living organisms and its resource is limited. Significant amount of used phosphorus is collected in sewage treatment plant as sludge. Sludge ash after incineration contains about 10% of phosphorus in dry mass basis, which is comparable to phosphate rocks, and it is an important source of phosphorus recovery. Acid and alkali were used to leach phosphorus from sludge ash and compared for their leaching kinetics and performance. Phosphorus leaching by NaOH was fast and 0.2 N and 2 N NaOH leached 49% and 56% of the total phosphorus in the sludge ash at the L/S ratio of 100. Phosphorus leaching by sulphuric acid and hydrochloric were very fast and most of the phosphorus was leached in 5 minutes. In case of sulphuric acid 95% of the total phosphorus in the sludge ash was leached by 0.2 N at the L/S ratio of 100 and 93% was leached by 1 N at the L/S ratio of 10. 1 N hydrochloric acid leached 99% of the total phosphorus at the L/S ratio of 10. The results showed acids were more effective than alkali for phosphorus leaching from sludge ash and hydrochloric acid leached more phosphorus than sulphuric acid.

Ammonium Chloride Solution Leaching of Crude Zinc Oxide Recovered from Reduction of EAF′s Dust

  • Youn, Ki-Byoung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.365-369
    • /
    • 2001
  • EAF's dust has been treated mainly by pyrometallurgical reduction process in rotary kiln furnace to recover valuable metal elements such as Zn and to avoid the disposal of hazardous materials to waste. Recently, hydrometallurgical eletrowinning of zinc from a zinc-amino chloride solution obtained by the leaching of EAF's dust was developed to recover high grade zinc metal from EAF’s dust. But there are some disadvantages in each process such as difficulty of operation condition control and sticking problem in kiln process and low extractability and recovery of zinc owing to insoluble zinc-ferrite in electrowinning process. We propose a new combined process of pyrometallurgical one and hydrometallurgical one to treat EAF's dust efficiently and economically. In this study, ammonium chloride solution leaching of crude zinc oxide recovered from reduction of EAF's dust was carried out to find out the efficiency of zinc extraction from it and the possibility for performance of eletrowinning in the proposed process. Effects of various leaching variables ruck as leaching temperature, concentration of leaching solution and leaching time were investigated. And the leaching results of the crude zinc oxide were compared with those of EAF's dust. The extraction percents of zinc in ammonium chloride solution leaching of the crude zinc oxide recovered from reduction of EAF's dust were above 80% after 60 minutes of leaching under the leaching condition of 4M NH$_4$CI concentration and above leaching temperature of 7$0^{\circ}C$. And the concentrations of zinc in the leached solution were obtained above 50g/$\ell$. The activation energy calculated for zinc extraction in NH$_4$CI leaching was 58.1 KJ/㏖ for EAF's dust and 15.8 KJ/㏖ for the crude zinc oxide recovered from reduction of EAF's dust.

  • PDF

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Recovery of Gallium and Indium from Zinc Residues by Acid Leaching (산침출에 의한 아연제련잔사로부터 갈륨 및 인디움의 회수)

  • 이화영;김성규;오종기
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.22-26
    • /
    • 1993
  • The flowsheet for the recovery of gallium and indium from zinc residues has been established based on the sulfuric acid treatment. In comparison with the alkali treatment, the method proposed in this work allowed the recovery of indium together with gallium. The majority of iron contained in leach liquor could be removed through the two-stage neutrallization under oxidative or reductive atmosphere. Crude gallium and indium could be obtained through the alkali and/or acid leaching of the products generated from the above treatment. In addition, cementation of indium with zinc powders could also be used for the concentration of it from weak acid solutions.

  • PDF

Study on the Recovery of Tin Oxide and Metallurgical Tin from the Waste Steel Ball for Barrel Plating (바렐도금용 폐Steel Ball로부터 산화주석 및 금속주석 회수에 관한 연구)

  • Kim, Dae Weon;Jang, Seong Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.505-510
    • /
    • 2012
  • A study of the recovery of tin and nickel from steel ball scraps for barrel plating was carried out through a physical treatment, a leaching treatment, hydrogen reduction and an electrolysis experiment. The recovery of the iron component was over 95% by the physical treatment. We obtained tin oxide in the form of metastannic acid ($SnO_2{\cdot}xH_2O$) with impurities of less than 5% from the leaching treatment. We also recovered the high-purity metallurgical tin at a rate that exceeded 99.9% by the electrolysis of crude tin obtained from the hydrogen reduction of metastannic acid.

The effects of current density and nickel content on copper electrowinning by energy saving system (에너지절약형 동(Cu)전해채취 및 전류밀도의 영향)

  • Lee, Hoo-In;Lee, Jae-Chun;Park, Jin-Tae;Kim, Min-Seuk;Sohn, Jeong-Soo;Koyama, Kazuya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.386-387
    • /
    • 2006
  • This study is about the recycling technology of scrap a PCB(printed circuit board) produced in home appliances or automobile industry. And we develop the recycling technology of cooper (Cu)which is contained to leaching solution. In stead of electrolytic collecting in existing sulphuric atmosphere, we apply process using the ammonia solution which is used in economizing energy. So m the process of electrolyzing scrap a PCB through the leaching and separation, we examine the effect of the nickel contained to the solution and the cooper degree of purity which is changed according to current density.

  • PDF

The Leaching and Recovery of Au from Scrap of PCBs (PCBs의 스크랩으로부터 Au 용출과 회수)

  • You, Don-Sang;Park, Cheon-Young
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.259-266
    • /
    • 2014
  • This study was carried out to find an environmental friendly and effective way to leach Au and Ag from scrap of Printed Circuit Boards (PCBs) using sodium-hypochlorite solution. In an EDS analysis, valuable metals such as Cu, Sn, Sb, Al, Ni, Pb and Au were all found in PCBs. The highest leaching rates obtained were 1% of pulp density with a chlorine:hypochlorite of 2:1 and a concentration of NaCl at 2M. The highest Au recovery was observed with the addition of sodium metabisulfite to make a 3M solution. It is confirmed that the leaching agent (chlorine-hypochlorite) could effectively leach Au and Ag from Printed Circuit Boards (scrap parts) and the additive reagent sodium metabisulfite could easily precipitate Au from the chlorine-hypochlorite solution.

The Efficiency of Fe Removal Rate from Gold Ore in the Oxidation Zone by Ammonia Leaching (암모니아 용출에 의한 산화대 금 광석으로부터 Fe 제거 효율에 관한 연구)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.113-122
    • /
    • 2016
  • This study aims to improve the recovery of gold and silver by removing hematite from gold ore of an oxidation zone with ammonia solution. Quartz, hematite and muscovite were present in the oxidation zone, while hematite was hydrogenous. As a result of performing an ammonia leaching test on variables, it is found that the maximum Fe leaching parameter was $-45{\mu}m$ particle size, 1.0 M sulfuric acid concentration, 5.0 g/l ammonium sulfate concentration and 2.0 M hydrogen peroxide concentration. It is also confirmed that goethite was precipitated and formed from that ammonia elution. As the amount of Fe-removal was increased in a solid-residue, the recovery of Au and Ag were increased, too.

Recovery and Separation of Nickel from the Spent Ni-Cd Batteries (폐 Ni-Cd전지로부터 Ni의 분리 및 회수에 관한 연구)

  • 김종화;남기열
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2000
  • Consumption of nickel is continuously increasing and the wastes of secondary battery, ferrite and catalyst containing Ni are also generated periodically. Among those wastes, the aim of this research is the recovery of nickel from used Ni-Cd recharge battery. Battery consisted of Ni 24 wt%, Fe 30 wt% and Cd 18.5 wt%. Metal was recovered by solvent extraction after leaching. Cadmium was leached completely in 1N-HCl and Ni was recovered above 70%. 30 vol% MSP-8 separated Cd and Ni completely from acidic leaching solution. In addition $NH_4NO_3$ as one of ammonium salt type leachants showed an excellent leaching selectivity to Ni and Cd. Ni in leached solution was recovered completely by LIX-extractant and more than 70% of Cd in raffinate was by D2EHPA.

  • PDF

Study on Leaching Behavior for Recovery of Ga Metal from LED Scraps (LED 공정스크랩으로부터 Ga 회수를 위한 침출 거동 연구)

  • Park, Kyung-Soo;Swain, Basudev;Kang, Lee Seung;Lee, Chan Gi;Uhm, Sunghyun;Hong, Hyun Seon;Shim, Jong-Gil;Park, Jeung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.414-417
    • /
    • 2014
  • LED scraps consisting of highly crystalline GaN and their leaching behavior are comprehensively investigated for hydro-metallurgical recovery of rare metals. Highly stable GaN renders the leaching of the LED scraps extremely difficult in ordinary acidic and basic media. More favorable state can be obtained by way of high temperature solid-gas reaction of GaN-$Na_2CO_3$ powder mixture, ball-milled thoroughly at room temperature and subsequently oxidized under ambient air environment at $1000-1200^{\circ}C$ in a horizontal tube furnace, where GaN was effectively oxidized into gallium oxides. Stoichiometry analysis reveals that GaN is completely transformed into gallium oxides with Ga contents of ~73 wt%. Accordingly, the oxidized powder can be suitably leached to ~96% efficiency in a boiling 4 M HCl solution, experimentally confirming the feasibility of Ga recycling system development.