DOI QR코드

DOI QR Code

The Efficiency of Fe Removal Rate from Gold Ore in the Oxidation Zone by Ammonia Leaching

암모니아 용출에 의한 산화대 금 광석으로부터 Fe 제거 효율에 관한 연구

  • Kim, Bong-Ju (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Cho, Kang-Hee (Dept. of Rural Systems Engineering/Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Choi, Nag-Choul (Dept. of Rural Systems Engineering/Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Park, Cheon-Young (Dept. of Energy and Resource Engineering, Chosun University)
  • 김봉주 (조선대학교 에너지.자원공학과) ;
  • 조강희 (서울대학교 지역시스템공학과) ;
  • 최낙철 (서울대학교 지역시스템공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Received : 2016.08.29
  • Accepted : 2016.09.29
  • Published : 2016.09.30

Abstract

This study aims to improve the recovery of gold and silver by removing hematite from gold ore of an oxidation zone with ammonia solution. Quartz, hematite and muscovite were present in the oxidation zone, while hematite was hydrogenous. As a result of performing an ammonia leaching test on variables, it is found that the maximum Fe leaching parameter was $-45{\mu}m$ particle size, 1.0 M sulfuric acid concentration, 5.0 g/l ammonium sulfate concentration and 2.0 M hydrogen peroxide concentration. It is also confirmed that goethite was precipitated and formed from that ammonia elution. As the amount of Fe-removal was increased in a solid-residue, the recovery of Au and Ag were increased, too.

산화대 금 광석에 존재하는 적철석을 암모니아 용액을 이용하여 제거하여 금과 은의 회수율을 향상시키고자 하였다. 산화대에는 석영, 적철석, 백운모가 존재하고 있으며, 적철석은 수성기원으로 형성되었다. 다양한 변수에 대하여 암모니아 용출실험을 수행한 결과, Fe 최대 용출 인자는 $-45{\mu}m$ 입도 크기, 1.0 M의 황산 농도, 5.0 g/l의 황산암모늄 농도 그리고 2.0 M의 과산화수소 농도일 때였다. 이 암모니아 용출용액으로부터 침철석이 침전-형성되는 것을 확인하였으며, 고체-잔류물에서 Fe-제거량이 증가할수록 Au와 Ag 회수율이 증가하였다.

Keywords

References

  1. Anand, S., Das, S.C., Das, R.P., and Jena, P.K. (1988) Leaching of manganese nodule in ammonical medium using ferrous sulfate as the reductant. Metallurgical Transactions B, 19B, 331-334.
  2. Atapour, H. and Atiabi, A. (2007) The geochemistry of gossan associated with Sarcheshmeh porphyry copper deposit. Kerman, Iran: implications for exploration and the environment, Journal of Geochemical Exploration, 93, 47-65. https://doi.org/10.1016/j.gexplo.2006.07.007
  3. Beckstead, L.W. and Miller, J.D. (1977) Ammonia, oxidation leaching of chalcopyrite-reaction kinetics. Metallurgical Transactions B, 8B, 19-29.
  4. Belogub, E,V., Novoselov, K.A., Yakovleva, V.A., and Spiro, B. (2008) Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the south Urals. Ore Geology Reviews, 33, 239-254. https://doi.org/10.1016/j.oregeorev.2006.03.008
  5. Browen, B.B., Benison, K.C., Oboh-Ikuenobe, F.E., Story, S., and Mormile, M.R. (2008) Active hematite concretion formation in morden acid saline lake sediments, Lake Brown, western Australia. Earth and Planetary Science Letters, 268, 52-63. https://doi.org/10.1016/j.epsl.2007.12.023
  6. Clarke, P., Fornasiero, D., Ralston, J., and Smart, R.St. C. (1995) A study of the removal of oxidation products from sulfide mineral surface. Minerals Engineering, 8, 1347-1357. https://doi.org/10.1016/0892-6875(95)00101-U
  7. Das, R.P. and Anand, S. (1995) Precipitation of iron oxides from ammonia-ammonium sulphate solutions. Hydrometallurgy, 38, 161-173. https://doi.org/10.1016/0304-386X(94)00052-5
  8. De oliveira, S.M.B., and De oliveira, N.M. (2000) The morphology of gold grains associated with oxidation of sulphide-bearing quartz veins at Sao Bartolomeu, central Brazil. South American Earth Sciencs, 13, 217-224. https://doi.org/10.1016/S0895-9811(00)00021-3
  9. Ghosh, M.K., Anana, S., and Das, R.P. (1990) Oxidative ammonia leaching of pure zinc sulfide in the presence of lead compounds. Metallurgical Transactions B, 21B, 402-404.
  10. Ghosh, M.K., Das, R.P., and Biswas, A.K. (2002) Oxidative ammonia leaching of sphalerite part I: noncatalytic kinetics. International Journal of Mineral Processing, 66, 241-254. https://doi.org/10.1016/S0301-7516(02)00068-6
  11. Ghosh, M.K., Das, R.P., and Biswas, A.K. (2003) Oxidative ammonia leaching of sphalerite part II: Cu(II)-catalyzed kinetics. International Journal of Mineral Processing, 70, 221-234. https://doi.org/10.1016/S0301-7516(03)00024-3
  12. Harris, D.C. (1990) The mineralogy of gold and its relevance to gold recoveries. Mineral Deposita, 25, S3-S7. https://doi.org/10.1007/BF00205243
  13. Henley, K.J., Clarke, N.C., and Sauter, P. (2001) Evaluation of a diagnostic leaching technique for gold in native gold and gold $\pm$ silver tellurides. Minerals Engineering, 14, 1-12. https://doi.org/10.1016/S0892-6875(00)00156-4
  14. Lawrance, L.M. and Griffin, B.J. (1994) Crystal features of supergene gold at hannan south, western Australia. Mineralium Deposita, 29, 391-398. https://doi.org/10.1007/BF01886956
  15. Madden, A.S., Hamilton, V.E., Elwood Madden, M.E., Larson, P.R., and Miller, M.A. (2010) Low-temperature mechanism for formation of coarse crystalline hematite through nanoparticle aggregation. Earth and Planetary Science letters, 298, 377-384. https://doi.org/10.1016/j.epsl.2010.08.014
  16. Morris, R.V., Ming, D.W., Graff, T.G., Arvidson, R.E., Bell III, J.F., Squyres, S.W., Mertzman, S.A., Gruener, J.E., Golden, D.C. Le, L., and Robinson, G.A. (2005) Hematite spherules in basaltic tephra altered under aqueous, aic-sulfate conditions on Mauna kea volcano, Hawaii,: possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 168-178. https://doi.org/10.1016/j.epsl.2005.09.044
  17. Niinae, M., Komatsu, N., Nakahiro, Y., Wakamatsu, T., and Shibata, J. (1996) Preferential leaching of cobalt, nickel and copper from cobalt-rich ferromanganese crusts with ammonical solutions using ammonium thiosulfate and ammonium sulfite as reducing agents. Hydrometallurgy, 40, 111-121. https://doi.org/10.1016/0304-386X(94)00085-H
  18. Park, K.H., Mohapatra, D., Reddy, B.R., and Nam, C.W. (2007) A study the oxidative ammonia/ammonium sulphate leaching of a complex(Cu-Ni-Co-Fe) matte. Hydrometallurgy, 86, 164-171. https://doi.org/10.1016/j.hydromet.2006.11.012
  19. Peng, Y., Grano, S., Ralston, J., and Fornasiero, D. (2002) Towards prediction of oxidation during grinding I. galena flotation. Minerals Engineering, 15, 493-498. https://doi.org/10.1016/S0892-6875(02)00062-6
  20. Peng, Y., Grabo, S., Fornasiero, D., and Ralston, J. (2003) Control of grinding conditions in the flotation of galena and its separation from pyrite. International Journal of Mineral Processing, 70, 67-82. https://doi.org/10.1016/S0301-7516(02)00153-9
  21. Pracejus, B. (2008) The ore minerals under microscope, an optical guide. Elsevier, 875p.
  22. Rao, K.S., Das, R.P., Mukunda, P.G., and Ray, H.S. (1993) Use of X-ray diffraction in a study of ammonia leaching of multimetal studies. Metallurgical Transactions B, 24B, 937-945.
  23. Sabba, N. and Akretche, D.E. (2006) Selective leaching of a copper ore by an electromembrane process using ammonia solutions. Mineral Engineering, 19, 123-129. https://doi.org/10.1016/j.mineng.2005.08.015
  24. Veglio, F., Trifoni, M., Pagnanelli, F., and Toro, L. (2001) Shrinking core model with variable activation energy: a kinetic model of manganiferous ore leaching with sulphuric acid and lactose. Hydrometallurgy, 60, 167-179. https://doi.org/10.1016/S0304-386X(00)00197-3
  25. Velasco, F., Herrero, J.M., Suarez, S., Yusta, I., Alvaro, A., and Tornos, F. (2013) Supergene features and evolution of gossan capping massive sulphide deposits in the Iberian pyrite belt. Ore Geology Reviews, 53, 181-203. https://doi.org/10.1016/j.oregeorev.2013.01.008
  26. Webster, J.G. and Mann, A.W. (1984) The influence of climate, geomorphology and primary geology on the supergene migration of gold and silver. Journal of geochimical Exploration, 22, 21-42. https://doi.org/10.1016/0375-6742(84)90004-9
  27. Wei, X., Viadero, Jr, R.C., and Buzby, K.M. (2005) Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environmental Engineering Science, 22, 745-755. https://doi.org/10.1089/ees.2005.22.745
  28. Wilson, A.F. (1984) Origin of quartz-free gold nuggests and supergene gold found in laterites and soils-a review and some new observations. Australian Journal of Earth Sciences, 31, 303-316.
  29. Yang, S., Blum, N., Rahders, E., and Zhang, Z. (1998) The nature of invisible gold in sulfide from the Xiangxi Au-Sb-W ore deposit in Northwestern Hunan, People's Republic of China. The Canadian Mineralogist, 36, 1361-1372.

Cited by

  1. 황화광물로부터 유용금속 침출을 위한 Acid Bake-water Leaching System 내 황산염 용매제의 적용성 vol.31, pp.2, 2016, https://doi.org/10.9727/jmsk.2018.31.2.67