• Title/Summary/Keyword: leaching and recovery

Search Result 208, Processing Time 0.029 seconds

Rare earths from secondary sources: profitability study

  • Innocenzi, Valentina;De Michelis, Ida;Ferella, Francesco;Veglio, Francesco
    • Advances in environmental research
    • /
    • v.5 no.2
    • /
    • pp.125-140
    • /
    • 2016
  • The paper is focused on the economic analysis of two hydrometallurgical processes for recovery of yttrium and other rare earth elements (REEs) from fluorescent phosphors of spent lamps. The first process includes leaching with sulphuric acid and precipitation of a mixture of oxalates by oxalic acid, the second one includes leaching with sulphuric acid, solvent extraction with D2EHPA, stripping by acid and recovery of yttrium and traces of other rare earths (REs) by precipitation with oxalic acid. In both cases the REEs were recovered as oxides by calcination of the oxalate salts. The economic analysis was estimated considering the real capacity of the HydroWEEE mobile's plant ($420kg\;batch^{-1}$). For the first flow-sheet the cost of recycling comes to $4.0{\euro}kg^{-1}$, while the revenue from the end-product is around $5.40{\euro}kg^{-1}$. The second process is not profitable, as well as the first one, taking into account the composition of the final oxides: the cost of recycling comes to $5.2{\euro}kg^{-1}$, while the revenue from the end-product is around $3.56{\euro}kg^{-1}$. The process becomes profitable if the final RE oxide mixture is sold for nearly $50{\euro}kg^{-1}$, a value rather far from the current market prices but not so unlikely since could be achieved in the incoming years, considering the significant fluctuations of the Res' market.

Research and Development for the Recovery of Uranium and Vanadium from Korean Black Shale Ore (국내(國內) 흑색(黑色) 점판암으로부터 우라늄 및 바나듐 회수(回收)의 연구개발(硏究開發))

  • Kim, Joon Soo
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2013
  • This general paper covers three parts of the uranium research and development. Part one covers scope of research and development of uranium ore and future prospect, supply and demand of uranium in the world market, deposit, grade and properties of Korean uranium ore and the second part covers status of previous study and supply target for yellow cake, technology of leaching, separation and preparation, procedure of the recovery of U / V from Korean black shale ore. Final part concludes the summary of the present discussion.

Hemicellulose Recovery from Lignocellulosic Material Hydrolyzed by Water (물로 가수분해된 섬유성 기질로부터 hemicellulose 회수)

  • Kim, Sung-Bae;Kim, Chang, Joon
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.317-322
    • /
    • 2005
  • Various recovery methods were investigated to maximize hemicellulose recovery from lignocellulosic material hydrolyzed by pure water. The pretreatment conditions of water hydrolysis were $170\~180^{\circ}C$ and 1 hour of reaction time. The percentage of hemicellulose solubilized increased as the temperature increased from 170 to $180^{\circ}C$. However, significant decomposition of sugar was observed at temperature of $180^{\circ}C$. From the results of water hydrolysis, the total amount of glucan in solid residue and liquid hydrolyzate was close to the total glucan in the original biomass. For hemicellulose, however, there was a significant difference between both contents. To prove this difference, various recovery methods were proposed. From the total sugar accountability (sugar in liquid + sugar in solid), it was confirmed that hemicellulose recovery in the hydrolyzate was increased if the product including both hydrolyzate and solid residue was physically stimulated by such as heating and ultrasound irradiation. This indicated that, in commercial scale processes that much bigger substrate sizes are used and a sufficient amount of leaching solvent can not be used after pretreatment, a significant amount of oligomers could be trapped in the solid matrix.

A Study on the Cementation of Cu, Ni and Co Ions with Mn Powders in Chloride Solution (염산용액중에서 망간분말에 의한 구리, 니켈 및 코발트 이온의 세멘테이션에 관한 연구)

  • 안재우;안종관;박경호
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.3-12
    • /
    • 2000
  • A Study on the cementation for the recovery of Cu, Ni and Co with Mn metallic powders in leaching solution from the manganese nodule that have removed Fe ions was studied. The results showed that the recovery efficiencies of metal ions with Mn powders increased when the temperature, pH and the concentration of chloride ions were increased in mixed solution. And the recovery efficiencies of Cu was 98% and not changed with the addition amounts of Mn powders but, in case of Co and Ni, the recovery efficiencies were increased with the addition amounts. The particle size of precipitate was about $5\mu\textrm{m}$. From the results of experiment we proposed the two-step cementation process for the recovery of Cu, Ni and Co with Mn powders.

  • PDF

Recovery of Gallium from Zinc Residues by Solvent Extraction (아연제련잔사로부터 용매추출법에 의한 갈륨의 회수)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.29-36
    • /
    • 2000
  • A study on the recovery of gallium from leaching solutions is carried out by solvent extraction in order to produce gallium oxide of high purity. The results show that the extraction of gallium is found to be increase with acidities of aqueous solution up to 7.4 M/L when pure isopropyl ether is used. And the extraction of iron also increases with increasing acidity of aqueous solution. It appears that the separation of gallium from iron cannot be satisfactorily accomplished with isopropyl ether. But, in the case of extaction with D2EHPA, almost complete extraction of iron is achieved-leaving all the gallium in the aqueous solution-by maintaining the acidity of aqueous solution at 2 M/L. Accordingly, $Ga_2O_3{\cdot}H_2O$ of more than 99wt.% in purity can be produced from zinc residues through the processes comprising of alkali leaching, precipitation by neutralization and solvent extraction using isopropyl ether and D2EHPA as extractants.

  • PDF

Hydrogen Reduction Behavior of NCM-based Lithium-ion Battery Cathode Materials (NCM계 리튬이온 배터리 양극재의 수소환원 거동)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.163-168
    • /
    • 2024
  • As the demand for lithium-ion batteries for electric vehicles is increasing, it is important to recover valuable metals from waste lithium-ion batteries. In this study, the effects of gas flow rate and hydrogen partial pressure on hydrogen reduction of NCM-based lithium-ion battery cathode materials were investigated. As the gas flow rate and hydrogen partial pressure increased, the weight loss rate increased significantly from the beginning of the reaction due to the reduction of NiO and CoO by hydrogen. At 700 ℃ and hydrogen partial pressure above 0.5 atm, Ni and Li2O were produced by hydrogen reduction. From the reduction product and Li recovery rate, the hydrogen reduction of NCM-based cathode materials was significantly affected by hydrogen partial pressure. The Li compounds recovered from the solution after water leaching of the reduction products were LiOH, LiOH·H2O, and Li2CO3, with about 0.02 wt% Al as an impurity.

Recovery of Pt from the Chloride Leaching Solution of Spent Catalysts by using Column Extractor (폐촉매(廢觸媒) 염산침출액(鹽酸浸出液)에서 컬럼형 추출기(抽出器)에 의한 백금(白金) 회수(回收))

  • Sun, Pan-Pan;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.26-32
    • /
    • 2013
  • In order to recover Pt from the hydrochloric acid leaching solution of spent catalysts, bench scale Karr reciprocating column was employed. At an optimum flow rate and vibration frequency, iron and Pt was completely extracted by using TBP and Aliquat 336. At the same vibration frequency, iron and Pt was completely stripped by HCl and $HClO_4$ after adjusting the flow rate. In the case of extraction of HCl from the raffinate with TEHA, it was difficult to maintain the stability of the column extractor. A comparison of the operation results between column extractor and mixer-settler is reported.

Impact of Residual Hydrofluoric Acid on Leaching of Minerals and Arsenic from Different Types of Geological Media (잔류 불산에 의한 모델 지질토양시료의 광물 용해 및 비소 용출 특성)

  • Jeon, Pilyong;Moon, Hee Sun;Shin, Doyun;Hyun, Sung Pil
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • This study explored secondary effects of the residual hydrofluoric acid (HF) after a hypothetical acid spill accident by investigating the long-term dissolution of minerals and leaching of pre-existing arsenic (As) from two soil samples (i.e., KBS and KBM) through batch and column experiments. An increase in the HF concentration in both soil samples resulted in a dramatic increase in the release of major cations, especially Si. However, the amounts of mineral dissolved were dependent on the soil type and mineral characteristics. Compared to the KBM soil, relatively more Ca, Mg and Si were dissolved from the KBS soil. The column experiment showed that the long-term dissolution rates of the minerals are closely associated with the acid buffering capacity of the two soils. The KBM soil had relatively higher effluent pH values compared to the KBS soil. Also, more As was leached from the KBM soil, with a more amorphous hydrous oxide-bound As fraction. These results suggest that the potential of heavy metal leaching by the residual acid after an acid spill will be influenced by heavy metal speciation and mineral structure in the affected soil.

A Study to Recover Si from End-of-Life Solar Cells using Ultrasonic Cleaning Method (초음파 세척법을 이용한 사용 후 태양광 셀로부터 Si 회수 연구)

  • Lee, Dong-Hun;Go, Min-Seok;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.38-48
    • /
    • 2021
  • In this study, we determine the optimal process conditions for selectively recovering Si from a solar cell surface by removal of impurities (Al, Zn, Ag, etc.). To selectively recover Si from solar cells, leaching is performed using HCl solution and an ultrasonic cleaner. After leaching, the solar cells are washed using distilled water and dried in an oven. Decompression filtration is performed on the HCl solution, and ICP-OES (Inductively Coupled Plasma Optical Emission spectroscopy) full scan analysis is performed on the filtered solution. Furthermore, XRD (X-ray powder diffraction), XRF (X-ray fluorescence), and ICP-OES are performed on the dried solar cells after crushing, and the purity and recovery rate of Si are obtained. In this experiment, the concentration of acid solution, reaction temperature, reaction time, and ultrasonic intensity are considered as variables. The results show that the optimal process conditions for the selective recovery of Si from the solar cells are as follows: the concentration of acid solution = 3 M HCl, reaction temperature = 60℃, reaction time = 120 min, and ultrasonic intensity = 150 W. Further, the Si purity and recovery rate are 99.85 and 99.24%, respectively.

Recovery of Mg-Ferrite Powder from Acid Leaching Mg Waste by Hydrothermal Method (산 침출 Mg폐액으로부터 수열법에 의한 Mg-Ferrite 분말회수)

  • 김영순;윤기석;안찬영;이종현;원창환
    • Resources Recycling
    • /
    • v.6 no.4
    • /
    • pp.31-37
    • /
    • 1997
  • The Mg-ferrite powders were recovered from acid leaching Mg waste by hydrothermal method. Recovering conditions ofMg-Ferrite were investigated m this system and the powders prepared were characterized, using X-ray analysis, chemicalanalysis, SEM. TEM, and VSM. In this study, pH of solution and the kind of neutralizer wcre important factors on thecharacteristics of the product. The optimum condition of recovering MgPenite was the mole ratio of Fe" : Mg"=2'1, reactiontemperature : ZOWC, reaction time.lhr, at pH=lZ, and Oi partial pressure af 2000 psi. And the powders ~ccovered have amonodispersed and spherelike shapes with the narrow sue distribulion.ow sue distribulion.

  • PDF