DOI QR코드

DOI QR Code

A Study to Recover Si from End-of-Life Solar Cells using Ultrasonic Cleaning Method

초음파 세척법을 이용한 사용 후 태양광 셀로부터 Si 회수 연구

  • Lee, Dong-Hun (Department of Marine Convergence Design Engineering (Advanced Materials Engineering), Pukyong National University) ;
  • Go, Min-Seok (Department of Marine Convergence Design Engineering (Advanced Materials Engineering), Pukyong National University) ;
  • Wang, Jei-Pil (Department of Metallurgical Engineering, Department of Marine Convergence Design Engineering (Advanced Materials Engineering), Pukyong National University)
  • 이동헌 (국립부경대학교 마린융합디자인공학과(첨단소재공학)) ;
  • 고민석 (국립부경대학교 마린융합디자인공학과(첨단소재공학)) ;
  • 왕제필 (국립부경대학교 금속공학과, 마린융합디자인공학과(첨단소재공학))
  • Received : 2021.09.27
  • Accepted : 2021.10.13
  • Published : 2021.10.30

Abstract

In this study, we determine the optimal process conditions for selectively recovering Si from a solar cell surface by removal of impurities (Al, Zn, Ag, etc.). To selectively recover Si from solar cells, leaching is performed using HCl solution and an ultrasonic cleaner. After leaching, the solar cells are washed using distilled water and dried in an oven. Decompression filtration is performed on the HCl solution, and ICP-OES (Inductively Coupled Plasma Optical Emission spectroscopy) full scan analysis is performed on the filtered solution. Furthermore, XRD (X-ray powder diffraction), XRF (X-ray fluorescence), and ICP-OES are performed on the dried solar cells after crushing, and the purity and recovery rate of Si are obtained. In this experiment, the concentration of acid solution, reaction temperature, reaction time, and ultrasonic intensity are considered as variables. The results show that the optimal process conditions for the selective recovery of Si from the solar cells are as follows: the concentration of acid solution = 3 M HCl, reaction temperature = 60℃, reaction time = 120 min, and ultrasonic intensity = 150 W. Further, the Si purity and recovery rate are 99.85 and 99.24%, respectively.

본 연구에서는 사용 후 태양광 셀을 HCl 용액 및 초음파세척기의 cavitation효과를 사용하여 셀 표면의 불순물(Al, Zn, Ag 등)을 제거하여 Si을 선택적으로 회수하기 위한 최적 공정 조건을 찾기 위한 연구를 진행하였다. 태양광 셀에서 Si을 선택적으로 회수 하기 위해 HCl 용액 및 초음파세척기를 사용하여 침출을 진행하였고, 반응이 끝난 태양광 셀은 증류수로 세척 후 건조 오븐에 건조를 실시하였고, 반응된 HCl 용액은 감압 여과 실시 후 여과된 용액은 ICP-Full Scan 분석을 실시하였다. 또한, 건조 된 태양광 셀은 유발을 사용하여 파쇄 후 XRD, XRF, 및 ICP-OES 분석을 실시하였으며, 이를 통해 Si의 순도 및 회수율을 알 수 있었다. 실험은 산용액 농도, 반응 온도, 반응 시간, 초음파 세기를 변수로 두고 실험을 진행하였다. 위 과정을 통해 최종적으로 태양광 셀로부터 Si을 선택적으로 회수하기 위한 최적 공정 조건은 산용액 농도 3M HCl, 반응 온도 60℃, 반응 시간 120min, 초음파 세기 150W인것을 알 수 있었고, 최종적으로 Si의 순도는 99.85%, 회수율은 99.24%로 측정되었다.

Keywords

Acknowledgement

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through R&D Project for recyclability of non-recyclable products Program, funded by Korea Ministry of Environment (MOE) (NTIS : 1485017728).

References

  1. Aanesen, K., Heck, S., Pinner, D., 2012 : Solar power: Darkest Before Dawn, Mckinsey report, pp.3-15.
  2. World Energy Outlook, 2018, International Energy Agency (IEA).
  3. Global Market Outlook For Solar Power, 2019 - 2023, 2019, May, Solar Power Europe.
  4. J. Tao., S. Yu., 2015 : Review on feasible recycling pathways and technologies of solar photovoltaic modules, Solae Energy Materials&Solar Cells, 141, pp.108-124. https://doi.org/10.1016/j.solmat.2015.05.005
  5. S. Weckend., A. Wade., G. Heath., 2016 : End-of-life management: Solar photovoltaic panels.
  6. Latunussa, C.E.L., Ardente, F., AndreaBlengini, G., et al., 2016 : Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels, SolarEnergyMaterials&SolarCells,156, pp.101-111.
  7. Hsi, H. W., Shin, W.J., Wang, L., et al., 2017 : Strategy and technology to recycle wafer-silicon solar modules," Solar Energy, 144, pp.22-31. https://doi.org/10.1016/j.solener.2017.01.001
  8. G. L. T. Filho., C. A. Rosa., R. M. Barros., et al., 2016 : Study of energy balance and environmental liabilities associated with the manufacture of crystalline Si photovoltaic modules and deployment in different regions, Sol. Energy Mater. Sol. Cells, 144, pp.383-394. https://doi.org/10.1016/j.solmat.2015.09.023
  9. Federzoni, L., D. Pelletier and J. Rakotoniaina., 2015 : Cabriss: Developing a Circular Economy Based on Recycled, Reused and Recovered Indium, Silicon and Silver Materials for Photovoltaic and Other Applications, EUPVSEC, Hamburg.
  10. Anna Kuczynska-Lazewska, Ewa Klugmann-Radziemska, Zuzanna Sobczak, et al., 2018 : Recovery of silver metallization from damaged silicon cells, Solar Energy Materials and Solar Cells, 176, pp.190-195. https://doi.org/10.1016/j.solmat.2017.12.004
  11. Eurostat, Renewable energy statistics. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Renewable_energy_statistics#Electricity, 2010.
  12. Ndiaye, A., Charki, A., Kobi, A., et al., 2013 : Degrations of silicon photovoltaic modules: A literature review, Solar Energy, 96, pp.140-151. https://doi.org/10.1016/j.solener.2013.07.005