• Title/Summary/Keyword: layer-wise model

Search Result 42, Processing Time 0.02 seconds

Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements

  • Aly, Aly Mousaad;Gol-Zaroudi, Hamzeh
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.99-117
    • /
    • 2020
  • This paper focuses on the processes of wind flow in atmospheric boundary layer, to produce realistic full scale pressures for design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g., COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD LES results are compared to corresponding pressures from open jet, full scale, wind tunnel, and the ASCE 7-10 standard for roof Component & Cladding design. The CFD LES shows its adequacy to produce peak pressures/loads on buildings, in agreement with field pressures, due to its capabilities of reproducing the spectral contents of the inflow at 1:1 scale.

지그재그 보요소를 이용한 응력해석 및 진동해석

  • Lee, Deog-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.149-159
    • /
    • 2004
  • Dynamic analysis of laminated beams with a embedded damping layer under tensional and compressive axial load is investigated. Improved Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss factors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effects of the axial tensional and compressive load on the frequencies and loss factors are discussed.

  • PDF

Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology (설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.801-813
    • /
    • 2023
  • Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.

A layered-wise data augmenting algorithm for small sampling data (적은 양의 데이터에 적용 가능한 계층별 데이터 증강 알고리즘)

  • Cho, Hee-chan;Moon, Jong-sub
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2019
  • Data augmentation is a method that increases the amount of data through various algorithms based on a small amount of sample data. When machine learning and deep learning techniques are used to solve real-world problems, there is often a lack of data sets. The lack of data is at greater risk of underfitting and overfitting, in addition to the poor reflection of the characteristics of the set of data when learning a model. Thus, in this paper, through the layer-wise data augmenting method at each layer of deep neural network, the proposed method produces augmented data that is substantially meaningful and shows that the method presented by the paper through experimentation is effective in the learning of the model by measuring whether the method presented by the paper improves classification accuracy.

Area-wise relational knowledge distillation

  • Sungchul Cho;Sangje Park;Changwon Lim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.501-516
    • /
    • 2023
  • Knowledge distillation (KD) refers to extracting knowledge from a large and complex model (teacher) and transferring it to a relatively small model (student). This can be done by training the teacher model to obtain the activation function values of the hidden or the output layers and then retraining the student model using the same training data with the obtained values. Recently, relational KD (RKD) has been proposed to extract knowledge about relative differences in training data. This method improved the performance of the student model compared to conventional KDs. In this paper, we propose a new method for RKD by introducing a new loss function for RKD. The proposed loss function is defined using the area difference between the teacher model and the student model in a specific hidden layer, and it is shown that the model can be successfully compressed, and the generalization performance of the model can be improved. We demonstrate that the accuracy of the model applying the method proposed in the study of model compression of audio data is up to 1.8% higher than that of the existing method. For the study of model generalization, we demonstrate that the model has up to 0.5% better performance in accuracy when introducing the RKD method to self-KD using image data.

Prediction of Bypass Transition Flow on Surface with Changing Pressure Gradient (압력구배가 변하는 표면 위의 Bypass 천이 유동의 예측)

  • Baek-Seong-Gu;Chung, Myung-Kyoon;Lim, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.823-832
    • /
    • 2002
  • A modified $textsc{k}$-$\varepsilon$model is proposed for calculation of transitional boundary-layer flows with changing pressure gradient. In order to develop the model for this problem, the flow is divided into three regions; pre-transition region, transition region and fully turbulent region. The effect of pressure gradient is taken into account in stream-wise intermittency factor, which bridges the eddy-viscosity models in the pre-transition region and the fully turbulent region. From intermittency data in various flows, Narashima's intermittency function, F(${\gamma}$), has been found to be proportional to $\chi$$^{n}$ according to the extent of pressure gradient. Three empirical correlations of intermittency factor being analyzed, the best one was chosen to calculate three benchmark cases of bypass transition flows with different free-stream turbulence intensity under arbitrary pressure gradient. It was found that the variations of skin friction and shape factor as well as the profiles of mean velocity in the transition region were very satisfactorily predicted.

Effects of internal damping on the bending vibration characteristics of composite drive shaft

  • Mo Yang;Haonan Hu;Xian Zhou;Wen Zhang;Yuebin Zhou;Yikun Wang;Jianmin Ye
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.663-672
    • /
    • 2024
  • This paper researched on the bending vibration characteristics of composite drive shaft with internal damping. To analyze the unbalanced excitation response in full speed range, a transfer matrix model was built based on the improved Layer-wise theory and the numerical damping, and compared with the metal drive shaft. The results show that the effect of internal damping of the composite shaft tube on bending vibration response was different in the subcritical, critical and supercritical speed ranges. Then, the finite element analysis and vibration tests were carried out to verify the analysis results of transfer matrix model.

Damped Vibrations of Axially-Stressed Laminated Beams using Zig-Zag Finite Element (축방향 하중을 받는 점탄성물질이 심어진 적층보의 지그재그요소를 이용한 진동해석)

  • Lee, Deog-Gyu;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.64-69
    • /
    • 2002
  • Dynamic analysis of laminated beams with a embedded damping layer under tension or compression axial load is investigated. Improved Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation using the governing equations of motion are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss factors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effects of the axial tension and compression load on the frequencies and loss factors are discussed.

Cylindrical bending of laminated cylindrical shells using a modified zig-zag theory

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.497-516
    • /
    • 1998
  • A relatively simple two-dimensional multilayered shell model is presented for predicting both global quantities and stress distributions across the thickness of multilayered thick shells, that is based on a third-order zig-zag approach. As for any zig-zag model, the layerwise kinematics is accounted for, with the stress continuity conditions at interfaces met a priori. Moreover, the shell model satisfies the zero transverse shear stress conditions at the upper and lower free surfaces of the shell, irrespective of the lay-up. By changing the parameters in the displacement model, some higher order shell models are obtained as particular cases. Although it potentially has a wide range of validity, application is limited to cylindrical shell panels in cylindrical bending, a lot of solutions of two-dimensional models based on rather different simplyfying assumptions and the exact three-dimensional elasticity solution being available for comparisons for this benchmark problem. The numerical investigation performed by the present shell model and by the shell models derived from it illustrates the effects of transverse shear modeling and the range of applicability of the simplyfying assumptions introduced. The implications of retaining only selected terms depending on the radius-to-thickness ratio are focused by comparing the present solutions to the exact one and to other two-dimensional solutions in literature based on rather different simplyfying assumptions.

Wind tunnel modeling of flow over mountainous valley terrain

  • Li, C.G.;Chen, Z.Q.;Zhang, Z.T.;Cheung, J.C.K.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.275-292
    • /
    • 2010
  • Wind tunnel experiments were conducted to investigate the wind characteristics in the mountainous valley terrain with 4 simplified valley models and a 1:500 scale model of an existing valley terrain in the simulated atmospheric neutral boundary layer model. Measurements were focused on the mean wind flow and longitudinal turbulence intensity. The relationship between hillside slopes and the velocity speed-up effect were studied. By comparing the preliminary results obtained from the simplified valley model tests and the existing terrain model test, some fundamental information was obtained. The measured results indicate that it is inappropriate to describe the mean wind velocity profiles by a power law using the same roughness exponent along the span wise direction in the mountainous valley terrain. The speed-up effect and the significant change in wind direction of the mean flow were observed, which provide the information necessary for determining the design wind speed such as for a long-span bridge across the valley. The longitudinal turbulence intensity near the ground level is reduced due to the speed-up effect of the valley terrain. However, the local topographic features of a more complicated valley terrain may cause significant perturbation to the general wind field characteristics in the valley.