References
- Aboshosha, H., Bitsuamlak, G. and El Damatty, A. (2015), "Turbulence characterization of downbursts using LES", J. Wind Eng. Indust. Aerod, 136, 44-61. https://doi.org/10.1016/j.jweia.2014.10.020.
- Aly, A.M. (2014), "Atmospheric boundary-layer simulation for the built environment: past, present and future", Build. Environ., 75, 206-221. https://doi.org/10.1016/j.buildenv.2014.02.004.
- Aly, A.M. (2016), "On the evaluation of wind loads on solar panels: The scale issue", Solar Energy, 135, 423-434. https://doi.org/10.1016/j.solener.2016.06.018.
- Aly, A.M. and Gol-Zaroudi, H. (2017), "Atmospheric boundary layer simulation in a new open-jet facility at LSU: CFD and experimental investigations", Measurement, 110, 121-133. https://doi.org/10.1016/j.measurement.2017.06.027.
- ASCE7-2010. (2010), Minimum Design Loads for Buildings and Other Structures, ASCE Standard, ASCE/SEI 7-10. American Society of Civil Engineers, Reston, Virginia, USA.
- Bienkiewicz, B. and Ham, H. (2003), "Wind tunnel modeling of roof pressure and turbulence effects on the TTU test building", Wind Struct., Int. J., 6(2), 91-106. https://doi.org/10.12989/was.2003.6.2.091.
- Davidson, L. (2007), "Using isotropic synthetic fluctuations as inlet boundary conditions for unsteady simulations", Adv. Appl. Fluid Mech., 1(1), 1-35.
- Davidson, L. (2008), "Hybrid LES-RANS: Inlet boundary conditions for flows with recirculation", Proceedings of the 2007 Symposium of Hybrid RANS-LES Methods, Corfu, Greece, June.
- Dhunny, A.Z., Lollchund, M.R. and Rughooputh, S.D.D.V. (2015), "A high-resolution mapping of wind energy potentials for Mauritius using Computational Fluid Dynamics (CFD)", Wind Struct., Int. J., 20(4), 565-578. https://doi.org/10.12989/was.2015.20.4.565.
- Feng, R., Liu, F., Cai, Q., Yang, G. and Leng, J. (2018), "Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi", Wind Struct., Int. J., 26(1), 11-24. https://doi.org/10.12989/was.2018.26.1.011.
- FLUENT. (2015), FLUENT C.F.D. ANSYS Inc., Canonsburg, Pennsylvania, USA, 15317.
- Franke, J., Hellsten, A., Schlunzen, K.H. and Carissimo, B. (2011), "The COST 732 best practice guideline for CFD simulation of flows in the urban environment: a summary", Int. J. Environ. Pollut., 44(1-4), 419-427. https://doi.org/10.1504/IJEP.2011.038443.
- Gol-Zaroudi, H. and Aly, A.M. (2017), "Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings", Wind Struct., Int. J., 25(3), 233-259. https://doi.org/10.12989/was.2017.25.3.233.
- He, J., Pan, F. and Cai, C. (2017), "A review of wood-frame low-rise building performance study under hurricane winds", Eng. Struct., 141, 512-529. https://doi.org/10.1016/j.engstruct.2017.03.036.
- Ho, T.C.E., Surry, D. and Morrish, D.P. (2003), NIST/TTU Cooperative Agreement-Windstorm Mitigation Initiative: Wind Tunnel Experiments on Generic Low Buildings, BLWT-SS20-2003, Boundary-layer Wind Tunnel Laboratory, University of Western Ontario, London, Canada.
- Hojstrup, J., Larsen, S.E. and Madsen, P.H. (1990), "Power spectra of horizontal wind components in the neutral atmospheric surface boundary layer," Proceedings of the AMS 9th Symposium on Turbulence and Diffusion, Roskilde, Denmark.
- Holmes, J.D. (2015), Wind Loading of Structures, Taylor and Francis, New York, USA.
- Jackson, A. (2017), "A comprehensive tour of snappy HexMesh", Proceedings of the 7th OpenFOAM Workshop, Berlin, Germany, October.
- Janajreh, I. and Emil, S. (2012), "Large eddy simulation of wind loads on a low-rise structure and comparison with wind tunnel results", Appl. Mech. Mater., 152, 1806-1813. https://doi.org/10.4028/www.scientific.net/AMM.152154.1806.
- Keating, A., Piomelli, U., Balaras, E. and Kaltenbach, H. (2004), "A priori and a posteriori tests of inflow conditions for large-eddy simulation", Phys. Fluid., 16(12), 4696-4712. https://doi.org/10.1063/1.1811672.
- Kramlich, J. (1980), "The fate and behavior of fuel-sulfur in combustion systems", Ph.D. Dissertation; Washington State University, Washington, USA.
- Levitan, M.L. and Mehta, K.C. (1992a), "Texas tech field experiments for wind loads part 1: building and pressure measuring system", J. Wind Eng. Industr. Aerodyn., 43(1-3), 1565-1576. https://doi.org/10.1016/0167-6105(92)90372-H.
- Levitan, M.L. and Mehta, K.C. (1992b), "Texas tech field experiments for wind loads part II: meteorological instrumentation and terrain parameters", J. Wind Eng. Industr. Aerodyn., 43(1-3), 1577-1588. https://doi.org/10.1016/0167-6105(92)90373-I.
- LSU_HPC. (2017), High Performance Computing at Louisiana State University, Louisiana State University.
- Lumley, J.L. and Panofsky, H.A. (1964), The Structure of Atmospheric Turbulence. John Wiley and Sons, New York, USA.
- Lund, T., Wu, X. and Squires, K. (1998), "Generation of turbulent inflow data for spatially-developing boundary layer simulations", J. Comput. Phys., 140(2), 233-258. https://doi.org/10.1006/jcph.1998.5882.
- Main, J.A. (2011), "Special-purpose software: MATLAB functions for estimation of peaks from time series", National Institute of Standards and Technology, Maryland, USA.
- Mann, J. (2012), Atmospheric Turbulence, Routledge, London, UK.
- Mann, J., Kristensen, L. and Jensen, N.O. (1998), Uncertainties of Extreme Winds, Spectra, and Coherences, in Bridge Aerodynamics, Balkema Publishers, AA/Taylor and Francis, The Netherlands.
- Mathey, F., Cokljat, D. and Bertoglio, J. (2006a), "Specification of LES inlet boundary condition using vortex method", Prog. Comput. Fluid Dyn., 6, 58-67. http://doi.org/10.1504/PCFD.2006.009483.
- Mathey, F., Cokljat, D., Bertoglio, J.P. and Sergent, E. (2006b), "Assessment of the vortex method for large eddy simulation inlet conditions", Prog. Comput. Fluid Dyn., 6(1-3), 58-67. https://doi.org/10.1504/PCFD.2006.009483
- Moret Rodrigues, A., Tome, A. and Gloria Gomes, M. (2017), "Computational study of the wind load on a free-form complex thin shell structure", Wind Struct., Int. J., 25(2), 177-193. https://doi.org/10.12989/was.2017.25.2.177.
- Morrison, M., Brown, T. and Liu, Z. (2012), "Comparison of field and full-scale laboratory peak pressures at the IBHS research center", Proceedings of the ATC/SEI Advances in Hurricane Engineering Conference, Florida, USA. October.
- Okada, H. and Ha, Y. (1992), "Comparison of wind tunnel and fullscale pressure measurement tests on the Texas Tech Building", J. Wind Eng. Indust., 43(1-3), 1601-1612. https://doi.org/10.1016/0167-6105(92)90375-K.
- OpenFOAM (2015), Openfoam User Guide, OpenFOAM Foundation Ltd., e2888.
- Ozdogan, M., Sungur, B., Namli, L. and Durmus, A. (2017), "Comparative study of turbulent flow around a bluff body by using two-and three-dimensional CFD", Wind Struct., Int. J., 25(6), 537-549. https://doi.org/10.12989/was.2017.25.6.537.
- Sadek, F. and Simiu, E. (2002), "Peak non-Gaussian wind effects for database-Assisted low-rise building design", J. Eng. Mech., 128(5), 530-539. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(530).
- Sergent, E. (2002), "Vers une methodologie de couplage entre la Simulation des Grandes Echelles et les modeles statistiques", Ph.D. Dissertation; Ecole centrale de Lyon, Ecully, France.
- Simiu, E. (2009), "Toward a standard on the wind tunnel method", NIST Technical Note, 1655, 1-36.
- Simiu, E. (2011), Design of Buildings for Wind - A Guide for ASCE 7-10 Standard Users and Designers of Special Structures, John Wiley and Sons Company, New York, USA.
- Smirnov, A., Shi, S. and Celik, I. (2001), "Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling", J. Fluid Eng., Amer. Soc. Mech. Eng., 123(2), 359. https://doi.org/10.1115/1.1369598.
- Smith, D.A., Morse, S.M. and Mehta, K.C. (2017), Wind Engineering Research Field Laboratory Selected Data Sets for Comparison to Model-Scale, Full-Scale and Computational Fluid Dynamics Simulations, Wind Science and Engineering Research Center, Texas Tech University, Lubbock, Texas, USA.
- Tabor, G. and Baba-Ahmadi, M. (2010), "Inlet conditions for large eddy simulation: A review", Comput. Fluid., 39(4), 553-567. https://doi.org/10.1016/j.compfluid.2009.10.007.
- Tamura, Y., Suganuma, S., Kikuchi, H. and Hibi, K. (1999), "Proper orthogonal decomposition of random wind pressure field", J. Fluids Struct., 13(7-8), 1069-1095. https://doi.org/10.1006/jfls.1999.0242.
- Tieleman, H., Ge, Z., Hajj, M. and Reinhold, T. (2003), "Pressures on a surface-mounted rectangular prism under varying incident turbulence", J. Wind Eng., 91(9), 1095-1115. https://doi.org/10.1016/S0167-6105(03)00045-X.
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Industr. Aerodyn., 96(10), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
- VDI. (2005), VDI 3783, Part 9, 2005. Environmental Meteorology-Prognostic Micro-Scale Windfield Models-Evaluation for Flow around Buildings and Obstacles, Beuth Verlag GmbH, Berlin, Germany.
- Xu, Y. (1995), "Model-and full-scale comparison of fatigue-related characteristics of wind pressures on the Texas Tech Building", J. Wind Eng. Industr. Aerodyn., 58(3), 147-173. https://doi.org/10.1016/0167-6105(95)00012-7.
- Yousef, M.A.A., Selvam, P.R. and Prakash, J. (2018), "A comparison of the forces on dome and prism for straight and tornadic wind using CFD model", Wind Struct., Int. J., 26(6), 369-382. https://doi.org/10.12989/was.2018.26.6.369.
- Zhang, X. (2009), CFD Simulation of Neutral ABL Flows, Risoe National Lab. for Sustainable Energy, Technical University of Denmark, Denmark.
Cited by
- Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds vol.31, pp.6, 2020, https://doi.org/10.12989/was.2020.31.6.533
- Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure vol.31, pp.6, 2020, https://doi.org/10.12989/was.2020.31.6.549
- Effect of aerodynamic modifications on the surface pressure patterns of buildings using proper orthogonal decomposition vol.32, pp.3, 2020, https://doi.org/10.12989/was.2021.32.3.227
- Fast simulation of large-scale non-stationary wind velocities based on adaptive interpolation reconstruction scheme vol.33, pp.1, 2020, https://doi.org/10.12989/was.2021.33.1.055
- Experimental investigation of the aerodynamics of a large industrial building with parapet vol.3, pp.1, 2021, https://doi.org/10.1186/s42774-021-00080-z