• Title/Summary/Keyword: layer approach

Search Result 1,221, Processing Time 0.029 seconds

Self-assembly Coloration Approach on Cotton Fibers using Porphyrin

  • Kim, Byung-Soon;Li, Xiachuan;Kim, Sung-Hoon;Bae, Jin-Seo;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.23-27
    • /
    • 2008
  • In this work, poly(diallyldimethylammoniumchloride) (PDDAC) and meso-tetrakis(4-carboxyphenyl)porphyrin were considered to produce the self-assembly fabrication films. This method is based on the layer-by-layer (LbL) deposition produced by the electrostatic attraction between positively charged PDDAC and negatively charged porphyrin ions. The result of multilayer fabrication was discussed with the level of color strength (K/S). K/S spectra of the fabricated multilayer films showed gradual increase behaviors. In addition, the color photo images of the fabricated multilayer films showed that PDDAC and porphyrin were successfully attracted by electrostatic self-assembly forces.

Numerical Simulation for Flow Optimization of De-NOx Selective Catalytic Reactor (배가스 탈질 설비의 유동해석 사례)

  • Go, Young-Gun;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.99-105
    • /
    • 2001
  • For the design of selective catalytic reactors of NOx by $NH_3$, engineering approach can be performed to determine the reactor shape, mixing device and $NH_3$ injection system. This study shows the optimization of guide vanes to improve the flow pattern near the catalyst layer of SCR in a untility boiler. By varying their spacings and shapes, flow performance of guide vanes was analyzed to achieve an uniform velocity distribution which increases the NOx convesion efficiency, and a flow direction normal to the layer which minimises the erosion by the dust in the flue gas. Including these results, experimental and numerical studies for the SCR design were discussed.

  • PDF

A Study on the Liquid Flow Characteristics in Layer Porous Media (다공질매체내의 유체유동 특성에 관한 연구)

  • Lee, C.G.;Hwang, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.243-248
    • /
    • 1993
  • In this research, unsteady groundwater flow in unconfined and homogeneous three layer aquifers is studied theoretically and experimentally. Numerical solutions are obtained by Runge Kutta and Runge Kutta Gill method after transforming the governing nonlinear partial differential equations to nonlinear ordinary differential equations. Experimental apparatus includes a test section filled with fine, medium and coarse sands. Experimental results are compared with the numerical solutions and both experimental and numerical results correspond well with each other. This numerical approach may be also applied to the cases which have more aquifers.

  • PDF

Placement inspection of the SMT components using 3-D vision (시각센서를 이용한 SMT 부품장착상태 검사)

  • 손영탁;오형렬;윤한종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.605-608
    • /
    • 1996
  • The aim of this thesis is to develop a SMT-components placement inspection system equipped with a visual sensor. The visual sensor, which consists of a camera and 2-layer LED illuminator, developed to inspect the component placement state such as missing, shift, flipping, polarity and tomb-stone. on PCB in the reflow-process. In practical applications, however, it is too hard to classify component from images mixed pad on PCB, cream solder paste and component. To overcome the problem, this thesis proposes the 2-layer illumination method and the heuristic image processing algorithms according to inspection type. To show the effectiveness of the proposed approach, a series of experiments on the inspection were conducted. The results show that the proposed method is robust to visual noise and variations in component conditions.

  • PDF

Analysis for Column Shortening of RC Frame Structures Considering the Construction Sequences (시공단계를 고려한 RC 프레임의 기둥축소 해석)

  • 곽효경;서영재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.210-217
    • /
    • 1999
  • This paper deals with the analysis for column shortening of RC frame structure considering the construction sequences. The time-dependent effects of concrete are taken into consideration in this study to simulate the actual structural behavior. The stiffness matrix of a beam element is derived on the bases of the layer approach, dividing a section with imaginary layers. Creep and shrinkage strains at each layer are calculated by using the first-order algorithm based on the expansion of creep compliance. Finally, the correlation studies with the purpose of analyzing the time-dependent behavior of building structure are conducted using the analytical model proposed in this study.

  • PDF

Fabrication of Lateral and Stacked Color Patterns through Selective Wettability for Display Applications

  • Hong, Jong-Ho;Na, Jun-Hee;Li, Hongmei;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.140-143
    • /
    • 2010
  • A simple and versatile method of fabricating color patterns in two-dimension (2D) and three-dimension (3D) was developed using the selective-wettability approach. Red, green, and blue color elements are sequentially formed on a single substrate in a pattern-by-pattern and/or pattern-on-pattern fashion, through a simple coating process. Either 2D or 3D structures in an array format are produced by controlling the thickness of the hydrophobic layer (HL) coating a substrate within the framework of wetting transition. Moreover, it was demonstrated that the stacked geometry of two successive patterns can be easily tailored for various types of color arrays, with the pattern fidelity of a few tens of nanometers in terms of only a parameter of the HL thickness.

A 20-GHz Miniaturized Ring Hybrid Circuit Using TFMS on Low-Resistivity Silicon

  • Lee Sang-No;Lee Joon-Ik;Yook Jong-Gwan;Kim Yong-Jun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.2
    • /
    • pp.76-80
    • /
    • 2005
  • In this paper, a miniaturized ring hybrid circuit is characterized based on a thin film microstrip (TFMS) on low-resistivity silicon. In order to obtain low-loss characteristics, a polyimide layer with 50 $\mu$m thickness is spin-coated onto the silicon to be used for the substrate. First, propagation characteristics of TFMS lines consisting of the ring hybrid circuit are presented. Then, a ring hybrid circuit based on TFMS is featured by employing the triple concentric circle approach for miniaturization. Triple concentric circle lines with $\lambda$$_{g}$/4 or 3$\lambda$$_{g}$/4 line lengths are implemented on the surface of the polyimide by circularly meandering to reduce the circuit size of the designed ring hybrid. Good agreement between measured and simulated results is obtained.

Optimal Heating Load Identification using a DRNN (DRNN을 이용한 최적 난방부하 식별)

  • Chung, Kee-Chull;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1231-1238
    • /
    • 1999
  • This paper presents an approach for the optimal heating load Identification using Diagonal Recurrent Neural Networks(DRNN). In this paper, the DRNN captures the dynamic nature of a system and since it is not fully connected, training is much faster than a fully connected recurrent neural network. The architecture of DRNN is a modified model of the fully connected recurrent neural network with one hidden layer. The hidden layer is comprised of self-recurrent neurons, each feeding its output only into itself. In this study, A dynamic backpropagation (DBP) with delta-bar-delta learning method is used to train an optimal heating load identifier. Delta-bar-delta learning method is an empirical method to adapt the learning rate gradually during the training period in order to improve accuracy in a short time. The simulation results based on experimental data show that the proposed model is superior to the other methods in most cases, in regard of not only learning speed but also identification accuracy.

  • PDF

Particle Dispersion and Effect of Spin in the Turbulent Boundary Layer Flow (난류 경계층 유동에서 입자의 확산과 스핀의 영향)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • In this paper, we develope a dispersion model based on the Generalized Langevin Model. Thomson's well-mixed condition is the well known criterion to determine particle dispersion. But, it has 'non-uniqueness problem'. To resolve this, we adopt a turbulent model which is a new approach in this field of study. Our model was greatly simplified under the self-similarity condition, leaving model only two model constants $C_{0}$ and ${\gamma}$$_{5}$ that control the dispersion and spin which measures rotational property of the Lagrangian particle trajectory. We investigated the sign of spin as well as magnitude by using the Direct Numerical Simulation. Model calculations were performed on the neutrally stable boundary layer flow. We found that spin has weak effect on the particle dispersion but it shows the significant effect on the horizontal flux compared to the zero-spin model.

A Study on the 2-D Unsteady Flow and Heat Transfer on Turbine Rotor Passage (가스터빈 회전익 채널내 2차원 비정상 유동 및 열전달 특성에 관한 연구)

  • Koo, K.H.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.428-433
    • /
    • 2000
  • The characteristics of unsteady heat transfer and boundary layer flow in the SSME turbine rotor passage are investigated with LRN $k-{\varepsilon}$ turbulence model. The unsteady flow and heat transfer in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid/boundary-layer flow approach. The relevant governing equations are discretized to a system of finite different equations by means of a BTBCS implicit method. These equations have been solved numerically, for the velocity and temperature fields using TDMA method. Heat flux on the blade surface and flow parameters in the rotor passage are calculated with wake interaction. Numerical results show that velocity, pressure, turbulent kinetic energy and heat flux on the blade surface are varied periodically by wake passing.

  • PDF