• Title/Summary/Keyword: layer 2

Search Result 19,001, Processing Time 0.049 seconds

Effect on the surface passivation of i-a-Si:H thin films formed on multi-crystalline Si wafer (유도결합플라즈마 CVD법을 이용한 비정질 실리콘 박막증착을 통한 다결정 실리콘 기판의 표면 passivation 특성평가)

  • Jeong, Chaehwan;Ryu, Sang;Lee, Jong-Ho;Kim, Ho-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.82.1-82.1
    • /
    • 2010
  • 수소화된 비정질 실리콘 박막을 이용한 반도체는 현재 태양전지, 트랜지스터, 매트릭스 배열 및 이미지 센서 등의 분야에서 이용되고 있다. 자세히 이야기 하면, 여러 가지의 광전효과 물질에 대한 특성이 있으며, 가시광선영역에 대하여 > $10^5cm^{-1}$이상의 매우 높은 광흡수계수와 낮은 온도를 갖는 증착공정 등이 있다. 박막의 밴드갭은 약 1.6~1.8eV로서 태양전지의 흡수층과 passivation층으로 적절하다. 여러 가지 종류의 태양전지 중 비정질 실리콘 박막/결정질 실리콘 기판의 구조로 이루어진 이종접합 태양전지는 저온에서 공정이 가능한 대표적인 것으로서 HIT(Heterojunction with Intrinsic Thin layer)구조로 산요사에 의해 제안된 것이다. 이것은 결정질 실리콘 기판과 도핑된 비정질 실리콘 박막사이에 얇은 진성층 비정질실리콘 박막을 삽입함으로서, 캐리어 전송을 좋게하여 실리콘 기판 표면의 passivation효과를 증대시키는 결과를 가지고 온다. 실험실 규모에서는 약 20%이상의 효율을 보이고 있으며, 모듈에서는 19.5%의 높은 효율을 보이고 있어 실리콘 기판을 이용한 고효율 태양전지로서 각광을 받고 있다. 이러한 이종접합 태양전지의 대부분은 단결정 실리콘을 사용하고 있는데, 점차적으로 다결정 실리콘 기판으로 추세가 바뀌고 있어, 여기에 맞는 표면 passivation 공정 및 분석이 필요하다. 본 발표에서는 다결정 실리콘 기판위에 진성층 비정질 실리콘 박막을 유도결합 플라즈마 화학기상 증착법(ICP-CVD)을 이용하여 제조하여 passivation 효과를 분석한다. 일반적으로 ICP는 CCP(coupled charged plasma)에 비해 약 100배 이상 높은 플라즈마 밀도를 가지고 있으며, 이온 충돌같은 표면으로 작용하는 것들이 기존 방식에 비해서 작다라는 장점이 있다. 먼저, 유리기판을 사용하여 ICP-CVD 챔버내에 이송 한 후 플라즈마 파워, 온도 및 가스비(SiH4/H2)에 따른 진성층 비정질 실리콘 박막을 증착 한 후, 밴드갭, 전도도 및 결합구조 등에 대한 결과를 분석한 후, 최적의 값을 가지고 250um의 두께를 갖는 다결정 실리콘을 기판위에 증착을 한다. 두께(1~20nm)에 따라 표면의 passivation이 되는 정도를 QSSPCD(Quasi steady state Photoconductive Decay)법에 의하여 소수캐리어의 이동거리, 재결합율 및 수명 등에 대한 측정 및 분석을 통하여 다결정 실리콘 기판의 passivation effect를 확인한다. 제시된 데이터를 바탕으로 향후 다결정 HIT셀 제조를 통해 태양전지 효율에 대한 특성을 비교하고자 한다.

  • PDF

The Stability Analysis of Near Parallel Tunnels Pillar at Multi-layered Soil with Shallow Depth by Numerical Analysis (수치해석에 의한 저토피 다층지반에서 근접 병설터널 필라의 안정성 분석)

  • Lim, Hyungmin;Son, Kwangrok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, in general, separation distance between existing parallel tunnels was set at two to five times as distant as the diameter of the tunnels according to ground conditions. Recently, however, actual applicability of closely spaced parallel tunnels whose distance between tunnel centers was shorter than the diameter has increased due to environmental damages resulting from massive cutting, restriction in purchase of required land, and maintenance of linear continuity. In particular, when the pillar width of tunnel decreases, the safety of pillars affects behaviors of the tunnel and therefore the need for diverse relevant studies has emerged. However, research so far has been largely confined to analysis of behavior characteristics of pillars, or parameters affecting design, and actually applicable and quantitative data have not been presented. Accordingly, in order to present a stability evaluation method which may maximally reflect construction conditions of spots, this study reflected topographical and stratigraphic characteristics of the portal part with the highest closeness between the tunnels, simulated multi-layer conditions with rock mass and complete weathering, and assessed the degree of effect the stability of pillars had on the entire tunnels through numerical analysis according to changes in pillar width by ground strength. This study also presented composite analysis result on ground surface settlement rates, interference volume rates, and average strength to stress and a formula, which may be applicable to actual work, to evaluate safety rates of closely spaced parallel tunnel pillars and minimum pillar width by ground strength based on failure criteria by Hoek-Brown (1980).

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF

An Improvement of Performance for Data Downstream in IEEE 802.11x Wireless LAN Networks (IEEE 802.11x 무선 랜에서의 데이터 다운스트림 성능 향상)

  • Kim, Ji-Hong;Kim, Yong-Hyun;Hong, Youn-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.149-158
    • /
    • 2006
  • We proposed a method for improving a performance of TCP downstream between a desktop PC as a fixed host and a PDA as a mobile host in a wired and wireless network based on IEEE 802.11x wireless LAN. With data transmission between these heterogeneous terminals a receiving time during downstream is slower than that during upstream by 20% at maximum. The reason is that their congestion window size will be oscillated due to a significantly lower packet processing rate at receiver compared to a packet sending rate at sender. Thus it will cause to increase the number of control packets to negotiate their window size. To mitigate these allergies, we proposed two distinct methods. First, by increasing a buffer size of a PDA at application layer an internal processing speed of a socket receive buffer of TCP becomes faster and then the window size is more stable. However, a file access time in a PDA is kept nearly constant as the buffer size increases. With the buffer size of 32,768bytes the receiving time is faster by 32% than with that of 512bytes. Second, a delay between packets to be transmitted at sender should be given. With an inter-packet delay of 5ms at sender a resulting receiving time is faster by 7% than without such a delay.

Epoxy/BaTiO3 (SrTiO3) composite films and pastes for high dielectric constant and low tolerance embedded capacitors fabrication in organic substrates

  • Paik Kyung-Wook;Hyun Jin-Gul;Lee Sangyong;Jang Kyung-Woon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2005.09a
    • /
    • pp.201-212
    • /
    • 2005
  • [ $Epoxy/BaTiO_3$ ] composite embedded capacitor films (ECFs) were newly designed fur high dielectric constant and low tolerance (less than ${\pm}15\%$) embedded capacitor fabrication for organic substrates. In terms of material formulation, ECFs are composed of specially formulated epoxy resin and latent curing agent, and in terms of coating process, a comma roll coating method is used for uniform film thickness in large area. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ composite ECF is measured with MIM capacitor at 100 kHz using LCR meter. Dielectric constant of $BaTiO_3$ ECF is bigger than that of $SrTiO_3$ ECF, and it is due to difference of permittivity of $BaTiO_3\;and\;SrTiO_3$ particles. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ ECF in high frequency range $(0.5\~10GHz)$ is measured using cavity resonance method. In order to estimate dielectric constant, the reflection coefficient is measured with a network analyzer. Dielectric constant is calculated by observing the frequencies of the resonant cavity modes. About both powders, calculated dielectric constants in this frequency range are about 3/4 of the dielectric constants at 1 MHz. This difference is due to the decrease of the dielectric constant of epoxy matrix. For $BaTiO_3$ ECF, there is the dielectric relaxation at $5\~9GHz$. It is due to changing of polarization mode of $BaTiO_3$ powder. In the case of $SrTiO_3$ ECF, there is no relaxation up to 10GHz. Alternative material for embedded capacitor fabrication is $epoxy/BaTiO_3$ composite embedded capacitor paste (ECP). It uses similar materials formulation like ECF and a screen printing method for film coating. The screen printing method has the advantage of forming capacitor partially in desired part. But the screen printing makes surface irregularity during mask peel-off, Surface flatness is significantly improved by adding some additives and by applying pressure during curing. As a result, dielectric layer with improved thickness uniformity is successfully demonstrated. Using $epoxy/BaTiO_3$ composite ECP, dielectric constant of 63 and specific capacitance of 5.1nF/cm2 were achieved.

  • PDF

Process design for solution growth of SiC single crystal based on multiphysics modeling (다중물리 유한요소해석에 의한 SiC 단결정의 용액성장 공정 설계)

  • Yoon, Ji-Young;Lee, Myung-Hyun;Seo, Won-Seon;Shul, Yong-Gun;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • A top-seeded solution growth (TSSG) is a method of growing SiC single crystal from the Si melt dissolved the carbon. In this study, multiphysics modeling was conducted using COMSOL Multiphysics, a commercialized finite element analysis package, to get analytic results about electromagnetic analysis, heat transfer and fluid flow in the Si melt. Experimental results showed good agreements with simulation data, which supports the validity of the simulation model. Based on the understanding about solution growth of SiC and our set-up, crystal growth was conducted on off-axis 4H-SiC seed crystal in the temperature range of $1600{\sim}1800^{\circ}C$. The grown layer showed good crystal quality confirmed with optical microscopy and high resolution X-ray diffraction, which also demonstrates the effectiveness of the multiphysics model to find a process condition of solution growth of SiC single crystal.

Marine Bio-environmental Characteristics with the Distributions of Dinoflagellate Cyst Assemblages in the Ulsan Coastal Waters (UCW) (와편모조 시스트 분포에 의한 울산연안 해역의 생물해양환경 특성)

  • Yoon, Yang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.361-372
    • /
    • 2017
  • This study described the spatial distribution of dinoflagellate cyst assemblages in the Ulsan Coastal Waters (UCW). Surface sediment samples from 15 stations revealed the occurrence of 33 species involving the Groups Protoperidinioid (51.5%), Gonyaulacoid (30.4%), Calciodineloid (9.1%), Gymnodinioid (3.0%), Diplopsallid (3.0%) and Tuberculodinioid (3.0%). The recorded cyst abundance in the UCW recorded was low ($260{\sim}1,680cysts\;g-dry^{-1}$) compared to Korean coastal waters. The abundance of heterotrophic cysts is higher in the Ulsan harbour and northwestern parts of UCW with eutrophic areas, however autotrophic species are more prevalent in the southern parts with open sea environments. The dinoflagellate cyst assemblages in the UCW were characterized by the dominance of Gonyaulax scrippsae, Protoperidinium sp. (Brigantedinium sp.), and Gonyaulax spinifera complex. The advent of the toxic dinoflagellate, Pyrodinium bahamense var. bahamense was recorded for the first time in the East-south sea of Korea. Therefore, as a result of ongoing monitoring and management for new toxic dinoflegallates from tropical or subtropical regions, analysis of dinoflagellate cyst assemblages in the UCW has been deemed necessary.

Design of a Multi-Band Network Selection System for Seamless Maritime Communication Networks (단절 없는 해상 통신 네트워크를 위한 멀티대역 네트워크선택기 시스템 설계)

  • Cho, A-ra;Yun, Changho;Lim, Yong-kon;Choi, Youngchol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1252-1260
    • /
    • 2017
  • As digital communication technology evolves, the diversity of maritime communication methods has benn increasing due to the emergence of new maritime communication technologies such as digital very high frequency (VHF) communication systems and LTE-M as well as traditional conventional maritime communication systems. At sea, all maritime communication methods may be available, but only some communication methods may be available depending on the location. In this paper, we propose a multi-band network selection (MNS) system that can provide seamless maritime communication service by switching to an optimal communication band among available communication systems, depending on network environment and user requirements. The proposed MNS system in the middleware layer is designed to be able to interface with two types of digital VHF communication systems that satisfy Annex 1 and Annex 4 of ITU-R M. 1842-1, LTE, and high frequency (HF) communication systems. We assign priority to each communication band, and design an optimal communication band determination algorithm based on this priority.

Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow (천음속 익형 유동에서 비평형 응축이 Drag Divergence Mach Number에 미치는 영향에 관한 수치 해석적 연구)

  • Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.785-792
    • /
    • 2016
  • In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same ${\alpha}$, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in ${\Phi}_0$. For the same $M_{\infty}$, ${\Phi}_0$, and $T_0$, the length of the non-equilibrium condensation zone ${\Delta}_z$ decreases with increasing ${\Phi}_0$. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient $C_D$ decreases with an increase in ${\Phi}_0$ for the same $M_{\infty}$ and ${\alpha}$. For the same ${\alpha}$, $M_D$ increases with increasing ${\Phi}_0$, while $M_D$ decreases with an increase in ${\alpha}$.

Analysis of the Causes of Deformation of Packaging Materials Used for Ready-to-Eat Foods after Microwave Heating (즉석편의 식품용 포장재의 전자레인지 가열에 의한 변형 원인 분석)

  • Yoon, Chan Suk;Hong, Seung In;Cho, Ah Reum;Lee, Hwa Shin;Park, Hyun Woo;Lee, Keun Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • The aim of this study was to investigate the deformation of packaging materials used for ready-to-eat (RTE) foods after the retort process and microwave heating. From the multilayer films consisting of polyethylene terephthalate (PET), polyamide (PA), and cast polypropylene (CPP) in a stand-up pouch form used for RTE foods, some deformation of the CPP layer, which was in direct contact with the food, was observed after the retort process and microwave heating. The damage was more severely caused by microwave heating than by the retort process. This may be attributed to diverse factors including the non-uniform heating in a microwave oven, the sorption of oil into the packaging film, and the different characteristics of food components such as viscosity, salt and water content. The development of heat-resistant packaging materials and systems suitable for microwave heating of RTE foods is required for the safety of consumers.