• Title/Summary/Keyword: layer 2

Search Result 19,004, Processing Time 0.047 seconds

Effect of composition on the structural and thermal properties of TiZrN thin film (TiZrN 박막의 조성이 구조적 특성 및 열적 특성에 미치는 영향)

  • Choi, Byoung Su;Um, Ji Hun;Seok, Min Jun;Lee, Byeong Woo;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2021
  • The effect of chemical composition on the structural and thermal properties of TiZrN thin films was studied. As the Zr fraction in the deposited TixZr1-xN (x = 0.87, 0.82, 0.7, 0.6, and 0.28) increased, microstructural changes consisted of reduction in the grain size and a gradual transition from columnar structure to granular structure were observed. In addition, it was also confirmed that a gradual crystal phase transition from TiN to TiZrN has occurred as the Zr fraction increased up to 0.4. After heat treatment at 900℃, Ti0.82Zr0.18N and Ti0.7Zr0.3N layers were converted to a form in which rutile phase TiO2 and TiZrO4 oxides coexist, while Ti0.6Zr0.4N layer was converted to TiZrO4 oxide. Among the five compositions of TiZrN films, the Ti0.6Zr0.4N showed the best high temperature stability and produced a significant enhancement in the thermal oxidation resistance of Inconel 617 through suppressing the surface diffusion of Cr caused by thermal oxidation of the Inconel 617 substrate.

Carbon diffusion behavior and mechanical properties of carbon-doped TiZrN coatings by laser carburization (레이저 침탄된 TiZrN 코팅에서 탄소확산거동과 기계적 특성)

  • Yoo, Hyunjo;Kim, Taewoo;Kim, Seonghoon;Jo, Ilguk;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.32-36
    • /
    • 2021
  • This study was investigated in carbon diffusion behavior of laser-carburized TiZrN coating layer and the changes of mechanical properties. The carbon paste was deposited on TiZrN coatings, and the laser was irradiated to carburize into the coatings. The XRD peak corresponding to the (111) plane shifted to a lower angle after the carburization, showing the lattice expansion by doped carbon. The decreased grain size implied the compression by the grain boundary diffusion of carbon. The XPS spectra for the bonding states of carbon was analyzed that carbon was substitute to nitrogen atoms in TiZrN, as carbide, through the thermal energy of laser. In addition, the combination of sp2 and sp3 hybridized bonds represented the formation of an amorphous carbon. The cross-sectional TEM image and the inverse FFT of the TiZrN coating after carburizing were observed as the wavy shape, confirming the amorphous phase located in grain boundaries. After the carburization, the hardness increased from 34.57 GPa to 38.24 GPa, and the friction coefficient decreased by 83 %. In particular, the ratio of hardness and elastic modulus (H/E) which is used as an index of the elastic recovery, increased from 0.11 to 0.15 and the wear rate improved by 65 %.

A Study on the Preparation of Ternary Transition Metal Coated-Dimensionally Stable Anode for Electrochemical Oxidation (전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구)

  • Park, Jong-Hyeok;Choi, Jang-Uk;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.409-416
    • /
    • 2021
  • Dimensionally stable electrodes are one of the important components in electrochemical water treatment processes. In the manufacturing of the dimensionally stable electrodes, the type of metal catalyst coated on the surface of the metal substrate, the coating and sintering methods substantially influence their performance and durability. In this study, using Ir-Ru-Ta ternary metal coating, various electrodes were prepared depending on the coating method under the same pre-treatment and sintering conditions, and its performance and durability were studied. As a coating method, brush and spray coating were used. As a result, the reduction in the amount of catalyst ink was achieved because more amount of metal could be coated for the electrode using spraying with the same amount of catalyst ink. In addition, the spray_2.0_3.0 electrode prepared by a specific spray coating method shows the phenomenon of cracking and the uniform coating of the ternary metal on the surface of the coating layer, and results in a high electrochemically active specific surface area, and the decomposition performance of 4-chlorophenol was superior to the other electrodes. However, it was found that there was no significant difference in durability depending on the coating method.

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

Characteristics of Groundwater Levels Fluctuation and Quality in Ddan-sum Area (낙동강 하중도 딴섬의 지하수위 변동 및 수질 특성)

  • Kim, Gyoobum;Choi, Doohoung;Shin, Seonho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • Confined aquifer, which is separated with upper clayey or silty materials, is partially distributed at the depths of the sediments in Ddan-sum area on the lower Nakdong river. Measurements of groundwater levels at 13 sites explain that groundwater flow shows seasonally various due to seasonal rainfall and agricultural water use. From 9 long-term monitoring data of groundwater levels at 7 sites, 3 types of groundwater levels time series can be classified using principal component analysis. The first type is seen in the center of Ddan-sum and has a round-shape graph due to a weak response to stream water levels. The second type exists in the outer part of Ddan-sum and shows sharply peak-shape graph due to a rapid and strong response to stream water levels and rainfall. The last type, which is seen in a deep layer, has a periodicity by tital effect. From geochemical analysis at each monitoring sites, [$Ca-HCO_3$] type happens in the center of Ddan-sum far from Nakdong river, and [$Na-HCO_3$] and [$Ca-SO_4(Cl)$] types exist in the outer of Ddan-sum affected by river quality.

A Study on Strength Characteristics of Sand-gravel Mixtures (모래-자갈 혼합토의 강도 특성에 관한 연구)

  • Park, Sung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.13-19
    • /
    • 2011
  • The strength of granular mixtures can be controlled by the majority of the mixture, fine grains. However, in some cases, the small amount of gravel in the mixture may influence the strength of the mixture. In this study, the effect of some dispersed gravels on strength of sand is evaluated. Gravels are embedded in the middle of each cemented sand layer. The size and number of embedded gravels varies. After two days curing, a series of unconfined compression tests is performed on the cemented sand with dispersed gravels. In addition to that, a series of direct shear tests is also carried out on clean sand with gravels to evaluate its friction angle. For the specimens with the same ratio of gravel weight of 7% in which gravel size and number are different, an unconfined compressive strength(UCS) of a specimen with gravels decreases up to 15% compared to a specimen without gravel and then increases with increasing gravel number. For specimens embedded with the same size of gravel, UCS decreases and then increases as a number of gravel increases. As a number of gravel increases, a friction angle of clean sand with gravels decreases up to $5^{\circ}$ and then recovers up to that of a specimen without gravel.

Design of EMI Reduction of SMPS Using MLCC Filters (MLCC를 이용한 SMPS의 EMI 저감 설계)

  • Choi, Byeong-In;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.97-105
    • /
    • 2020
  • Recently, as the data speed and operating frequencies of Ethernet keeps increasing, electro magnetic interference (EMI) also becomes increasing. The generation of such EMI will cause malfunction of near electronic devices. In this study, EMI filters were applied to reduce the EMI generated by DC-DC SMPS (switching mode power supply), which is the main cause of EMI generation of Ethernet switch. As the EMI filter, MLCCs with excellent withstanding voltage characteristics were used, which had advantages in miniaturization and mass production. Two types of EMI MLCC filters were used, which are X-capacitor and X, Y-capacitor. X-capacitor was composed of 2 MLCCs with 10 nF and 100 nF capacity and 1 Mylar capacitor. Y-capacitor was consisted of 6 MLCCs with a capacity of 27 nF. When only X-capacitor was applied as EMI filter, the conductive EMI field strength exceeded the allowable limit in frequency range of 150 kHz ~ 30 MHz. The radiative EMI also showed high EMI strength and very small allowable margin at the specific frequencies. When the X and Y-capacitors were applied, the conductive EMI was greatly reduced, and the radiation EMI was also found to have sufficient margin. In addition, X, Y-capacitors showed very high insulation resistance and withstanding resistance performances. In conclusion, EMI X, Y-capacitors using MLCCs reduced the EMI noise effectively and showed excellent electrical reliability.

Impacts of stream water quality and fish histopathology by effluents of wastewater treatment plant (하수종말처리장 배출수에 의한 하천 수질 특성 및 어류의 조직병리학적 영향)

  • Kim, Hye-Jin;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.678-690
    • /
    • 2020
  • In this study, the histological changes of Zacco platypus exposed to discharge from a Wastewater Treatment Plant (WTP), which is a point source, for a long time (2 to 3 years) were compared to the same species at a reference site (Ref.). Overall, tissues displayed various lesions in samples obtained at the point where discharge water from the point source was mixed. In the skin tissue, mucus cells from the epithelial layer expanded to the multilayered epithelium, indicating the immune system was activated. Epithelial cell detachment and proliferation were most prominent in the gills, which may have adversely affected circulation and respiration. Our data suggest immune system collapse was due to stimulation by aquatic substances. Both the fish phase analysis and the water quality analysis demonstrated depreciated conditions at the point source as compared to the reference stream, supporting the histological health evaluation results. These data together suggest a histological approach can also be used to assess water quality, and to an even higher degree when combined with other existing methods. Given the presented evaluation, improvement in the water quality of water discharged from WTP's is required.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Adsorption Characteristics and Thermodynamic Parameters of Acid Fuchsin on Granular Activated Carbon (입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • The adsorption of Acid Fuchsin (AF) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetics and thermodynamic parameters by experimenting with the initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH effect experiment, the adsorption of AF on activated carbon showed a bathtub type with increased adsorption at pH 3 and 11. The adsorption equilibrium data of AF fit well with the Freundlich isotherm model, and the calculated separation factor (1/n) value was found in which activated carbon can effectively remove AF. The pseudo-second-order kinetic model fits well within 7.88% of the error percent in the adsorption process. According to Weber and Morris's model plot, it was divided into two straight lines. The intraparticle diffusion rate was slow because the stage 2 (intraparticle diffusion) slope was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was a rate-controlling step. The activation energy of AF (13.00 kJ mol-1) corresponded to the physical adsorption process (5 - 40 kJ mol-1). The free energy change of the AF adsorption by activated carbon showed negative values at 298-318 K. As the spontaneity increased with increasing temperature. The adsorption of AF was an endothermic reaction (ΔH = 22.65 kJ mol-1).