DOI QR코드

DOI QR Code

A Study on the Preparation of Ternary Transition Metal Coated-Dimensionally Stable Anode for Electrochemical Oxidation

전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구

  • Park, Jong-Hyeok (Department of Civil, Environmental, and Biomedical Engineering, The Graduate School, Sangmyung University) ;
  • Choi, Jang-Uk (Department of Green Chemical Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Civil, Environmental, and Biomedical Engineering, The Graduate School, Sangmyung University)
  • 박종혁 (상명대학교 대학원 건설.환경.의생명공학과) ;
  • 최장욱 (상명대학교 공과대학 그린화학공학과) ;
  • 박진수 (상명대학교 대학원 건설.환경.의생명공학과)
  • Received : 2021.04.29
  • Accepted : 2021.06.09
  • Published : 2021.08.10

Abstract

Dimensionally stable electrodes are one of the important components in electrochemical water treatment processes. In the manufacturing of the dimensionally stable electrodes, the type of metal catalyst coated on the surface of the metal substrate, the coating and sintering methods substantially influence their performance and durability. In this study, using Ir-Ru-Ta ternary metal coating, various electrodes were prepared depending on the coating method under the same pre-treatment and sintering conditions, and its performance and durability were studied. As a coating method, brush and spray coating were used. As a result, the reduction in the amount of catalyst ink was achieved because more amount of metal could be coated for the electrode using spraying with the same amount of catalyst ink. In addition, the spray_2.0_3.0 electrode prepared by a specific spray coating method shows the phenomenon of cracking and the uniform coating of the ternary metal on the surface of the coating layer, and results in a high electrochemically active specific surface area, and the decomposition performance of 4-chlorophenol was superior to the other electrodes. However, it was found that there was no significant difference in durability depending on the coating method.

불용성 산화 전극은 전기화학적 수처리 공정에 있어 가장 핵심적인 소재이며, 이를 이용하여 난분해성 유기물질을 분해하는 방법으로 많은 연구가 진행되어 왔다. 이러한 불용성 산화 전극 제조에 있어 금속 기판 표면에 코팅하는 금속 촉매의 종류, 코팅 방식, 소결 방법 등의 다양한 제조 변수가 불용성 산화 전극의 성능 및 내구성에 영향을 미친다. 본 연구에서는 Ir-Ru-Ta 삼원 금속 코팅을 활용하여 동일한 전 처리 및 소결 조건에서 코팅 방법에 따라 불용성 산화 전극을 제조하고 이의 성능과 내구성을 연구하였다. 코팅 방식은 브러쉬 및 스프레이 코팅법을 활용하였으며, 그 결과 최적화된 스프레이 코팅 조건에서 동일한 촉매 잉크양으로 더 많은 금속을 Ti 기판 표면에 코팅이 가능하여 촉매 잉크 저감이 가능한 것을 확인하였다. 또한, 전극 표면의 갈라짐 현상 및 삼원 금속의 균일한 도포에 의해 스프레이 코팅법으로 제조한 Spray_2.0_3.0 전극이 가장 높은 전기화학적 활성 비표면적을 보여주었으며, 4-chlorophenol의 분해 성능이 타 전극에 비해 우수한 것으로 나타났다. 하지만, 불용성 산화전극의 내구성은 전극의 코팅방법에 따라 큰 차이가 없는 것으로 나타났다.

Keywords

References

  1. F. C. Moreira, R. A. R. Boaventura, E. Brillas, and V. J. P. Vilar, Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Appl. Catal. B: Environ., 202, 217-261 (2017). https://doi.org/10.1016/j.apcatb.2016.08.037
  2. E. Turro, A. Giannis, R. Cossu, E. Gidarakos, D. Mantzavinos, and A. Katsaounis, Electrochemical oxidation of stabilized landfill leachate on DSA electrodes, J. Hazard. Mater., 190(1-3), 460-465 (2011). https://doi.org/10.1016/j.jhazmat.2011.03.085
  3. S.-R. Park and J.-S. Park, An updated review of recent studies on dimensionally stable anodes, J. Korean Electrochem. Soc., 23(1), 1-10 (2020) https://doi.org/10.5229/JKES.2020.23.1.1
  4. T. O. Kwon, B. B. Park, J. S. Moon, and I. S. Moon, Destruction of acetic acid using various combinations of oxidants by an advanced oxidation processes, Appl. Chem. Eng., 18(4), 314-319 (2007).
  5. Y. J. Choe, J. B. Ju, and S. H. Kim, An electro-fenton system using magnetite coated one-body catalyst as an electrode, Appl. Chem. Eng., 29(1), 117-121 (2018). https://doi.org/10.14478/ACE.2017.1124
  6. A. Buthiyappan, A. R. Abdul Aziz, and W. M. A. Wan Daud, Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents, Rev. Chem. Eng., 32(1), 1-47 (2016). https://doi.org/10.1515/revce-2015-0034
  7. S. H. Lee, J. W. Choi, and H. S. Lee, A study on the formation of OH radical by metal-supported catalyst in ozone-catalytic oxidation process, Appl. Chem. Eng., 29(4), 432-439 (2018). https://doi.org/10.14478/ACE.2018.1037
  8. M. Seo, S. Cho, S. Lee, J. Kim, Y. H. Kang, and S. Uhm, A study on the highly effective treatment of spent electroless nickel plating solution by an advanced oxidation process, Appl. Chem. Eng., 26(3), 270-274 (2015). https://doi.org/10.14478/ace.2015.1016
  9. M.-J. Park, T.-S. Lee, M. Kang, and C.-B. Han, The effect of pre-treatment methods for the life time of the insoluble electrodes, J. Korean Soc. Environ. Eng., 38(6), 291-298 (2016). https://doi.org/10.4491/KSEE.2016.38.6.291
  10. D.-S. Kim and Y.-S. Kim, A study on the preparation of the dimensionally stable anode (DSA) with high generation rate of oxidants(I), J. Environ. Sci., 18(1), 49-60 (2009).
  11. H. T. Luu, D. N. Minh, and K. Lee, Effects of advanced oxidation of penicillin on biotoxicity, biodegradability and subsequent biological treatment, Appl. Chem. Eng., 29(6), 690-695 (2018). https://doi.org/10.14478/ace.2018.1079
  12. Q. Zhou, W. Li, and T. Hua, Removal of organic matter from landfill leachate by advanced oxidation processes: A review, Int. J. Chem. Eng., 2010, 27532 (2010).
  13. S. Moon, Anodic oxidation treatment methods of metals, J. Korean Inst. Surf. Eng., 51(1), 1-10 (2018). https://doi.org/10.5695/JKISE.2018.51.1.1
  14. J. Kim, C. Kim, S. Kim, and J. Yoon, A review of chlorine evolution mechanism on dimensionally stable anode (DSA®), Korean Chem. Eng. Res., 53(5), 531-539 (2015). https://doi.org/10.9713/kcer.2015.53.5.531
  15. A. R. Zeradjanin, N. Menzel, P. Strasser, and W. Schuhmann, Role of water in the chlorine evolution reaction at RuO2-based electrodes-understanding electrocatalysis as a resonance phenomenon, ChemSusChem, 5(10), 1897-1904 (2012). https://doi.org/10.1002/cssc.201200193
  16. S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta, 29(11), 1503-1512 (1984). https://doi.org/10.1016/0013-4686(84)85004-5
  17. C. A. Martinez-Huitle and E. Brillas, Decontamination of waste-waters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B: Environ., 166, 105-145 (2009). https://doi.org/10.1016/j.apcatb.2008.09.017
  18. F. Amano, Y. Furusho, and Y. M. Hwang, Amorphous iridium and tantalum oxide layers coated on titanium felt for electrocatalytic oxygen evolution reaction, ACS Appl. Energy Mater., 3(5), 4531-4538 (2020). https://doi.org/10.1021/acsaem.0c00208
  19. R. Chauhan, V. C. Srivastava, and A. D. Hiwarkar, Electrochemical mineralization of chlorophenol by ruthenium oxide coated titanium electrode, J. Taiwan Inst. Chem. Eng., 69, 106-117 (2016). https://doi.org/10.1016/j.jtice.2016.10.016
  20. C. Wang and P. Tian, Further electrochemical degradation of real textile effluent using PbO2 electrode, J. Electrochem. Sci. Technol. (2021).
  21. M. D. Hossain, C. M. Mustafa, and M. M. Islam, Effect of deposition parameters on the morphology and electrochemical behavior of lead dioxide, J. Electrochem. Sci. Technol., 8(3), 197-205 (2017). https://doi.org/10.5229/JECST.2017.8.3.197
  22. S. B. Lee and K. S. Yoo, Preparation of TiO2 particles using binary ionic liquids for photocatalysis, Appl. Chem. Eng., 23(4), 405-408 (2021).
  23. A. Tiwari, A. Shukla, D. Tiwari, S. S. Choi, H. G. Shin, and S. M. Lee, Titanium dioxide nanomaterials and its derivatives in the remediation of water: Past, present and future, Appl. Chem. Eng., 30(3), 261-279 (2019). https://doi.org/10.14478/ace.2019.1035
  24. J. D. Park and H. S. Lee, Removal characteristics of dichloroacetic acid at different catalyst media with advanced oxidation process using ozone/catalyst, Appl. Chem. Eng., 20(1), 87-93 (2009).
  25. Y. Yavuz and A. S. Koparal, Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode, J. Hazard. Mater., 136(2), 296-302 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.018
  26. S. Kumar, S. Singh, and V. C. Srivastava, Electro-oxidation of nitrophenol by ruthenium oxide coated titanium electrode: Parametric, kinetic and mechanistic study, Chem. Eng. J., 263, 135-143 (2015). https://doi.org/10.1016/j.cej.2014.11.051
  27. M. Yousefpour and A. Shokuhy, Electrodeposition of TiO2-RuO2-IrO2 coating on titanium substrate, Superlattices Microstruct., 51(6), 842-853 (2012). https://doi.org/10.1016/j.spmi.2012.03.024
  28. A. T. Marshall and R. G. Haverkamp, Nanoparticles of IrO2 or Sb-SnO2 increase the performance of iridium oxide DSA electrodes, J. Mater. Sci., 47(3), 1135-1141 (2012). https://doi.org/10.1007/s10853-011-5958-x
  29. M. Panizza, L. Ouattara, E. Baranova, and C. Comninellis, DSA-type anode based on conductive porous p-silicon substrate, Electrochem. Commun., 5(4), 365-368 (2003). https://doi.org/10.1016/S1388-2481(03)00069-9
  30. R. Chen, V. Trieu, A.R. Zeradjanin, H. Natter, D. Teschner, J. Kintrup, A. Bulan, W. Schuhmann, and R. Hempelmann, Micro-structural impact of anodic coatings on the electrochemical chlorine evolution reaction, Phys. Chem. Chem. Phys., 14(20), 7392-7399 (2012). https://doi.org/10.1039/c2cp41163f
  31. T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal., 2(8), 1765-1772 (2012). https://doi.org/10.1021/cs3003098
  32. G. F. Lee and J. Morris, Kinetics of chlorination of phenol-chlorophenolic tastes and odors, Int. J. Air Wat. Poll, 6, 419-431 (1962).
  33. J. De Coster, W. Vanherck, L. Appels, and R. Dewil, Selective electrochemical degradation of 4-chlorophenol at a Ti/RuO2-IrO2 anode in chloride rich wastewater, J. Environ. Manage., 190, 61-71 (2017). https://doi.org/10.1016/j.jenvman.2016.11.049