DOI QR코드

DOI QR Code

Adsorption Characteristics and Thermodynamic Parameters of Acid Fuchsin on Granular Activated Carbon

입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터

  • Lee, Jong-Jib (Department of Chemical Engineering, Kongju National University)
  • 이종집 (국립 공주대학교 화학공학부)
  • Received : 2021.01.23
  • Accepted : 2021.02.17
  • Published : 2021.03.31

Abstract

The adsorption of Acid Fuchsin (AF) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetics and thermodynamic parameters by experimenting with the initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH effect experiment, the adsorption of AF on activated carbon showed a bathtub type with increased adsorption at pH 3 and 11. The adsorption equilibrium data of AF fit well with the Freundlich isotherm model, and the calculated separation factor (1/n) value was found in which activated carbon can effectively remove AF. The pseudo-second-order kinetic model fits well within 7.88% of the error percent in the adsorption process. According to Weber and Morris's model plot, it was divided into two straight lines. The intraparticle diffusion rate was slow because the stage 2 (intraparticle diffusion) slope was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was a rate-controlling step. The activation energy of AF (13.00 kJ mol-1) corresponded to the physical adsorption process (5 - 40 kJ mol-1). The free energy change of the AF adsorption by activated carbon showed negative values at 298-318 K. As the spontaneity increased with increasing temperature. The adsorption of AF was an endothermic reaction (ΔH = 22.65 kJ mol-1).

입상 활성탄(GAC)에 대한 Acid Fuchsin (AF)의 흡착을 염료의 초기농도, 접촉 시간, 온도 및 pH 를 흡착변수로 실험하여 등온흡착과 동력학적, 열역학적 파라미터에 대해 조사하였다. pH 변화실험에서 활성탄에 대한 AF의 흡착은 pH 3과 11에서 모두 흡착이 증가하는 욕조형을 나타냈다. AF의 흡착평형자료는 Freundlich 등온식에 잘 맞았으며, 계산된 분리계수(1/n) 값으로부터 활성탄이 AF를 효과적으로 제거할 수 있다는 것을 알았다. 흡착공정은 유사 이차 반응속도식이 오차율 7.88% 이내로 잘 맞았다. Weber와 Morris 모델의 Polt에 따르면 두 단계의 직선으로 구분되었다. stage 2 (입자내 확산)의 기울기가 stage 1 (경계층 확산)의 기울기 보다 작아서 입자내 확산속도가 느렸다. 따라서 입자 내 확산이 속도지배단계인 것을 확인하였다. AF의 활성화 에너지(13.00 kJ mol-1)는 물리흡착공정(5 ~ 40 kJ mol-1)에 해당하였다. 활성탄에 의한 AF 흡착의 자유에너지 변화는 298 ~ 318 K에서 모두 음의 수치를 나타냈으며, 온도가 증가할수록 자발성이 더 높아졌다. AF 흡착은 흡열반응(ΔH = 22.65 kJ mol-1)으로 나타났다.

Keywords

References

  1. Park, H. O., Kim, K. J., Choi, J. Y., Li, F., Wu, Q., and Shin, W. S., "Sequential Biological-Chemical Process for Dyeing Wastewater Treatment," J. Korean Soc. Environ. Eng., 29, 866-867 (2007).
  2. El-Zaidia, E. F. M., Al-Kotb, M. S., and Yahia, I. S., "Physico-chemical Properties of Acid Fuchsin as Novel Organic Semiconductors: Structure, Optical and Electrical Properties," Physica B: Condensed Matter., 571, 71-75 (2019). https://doi.org/10.1016/j.physb.2019.06.060
  3. Lee, J. J., "Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon," Clean Technol., 26(1), 30-38 (2020).
  4. Zhang, L., Zhou, X., Guo, X., Song, X., and Liu, X., "Investigation on the Degradation of Acid Fuchsin Induced Oxidation by MgFe2O4 under Microwave Irradiation," J. Mol. Catal. A-Chem., 335(1-2), 31-37 (2011). https://doi.org/10.1016/j.molcata.2010.11.007
  5. Renita, A. A., Kumar, P. S., and Jabasingh, A., "Redemption of Acid Fuchsin Dye from Wastewater Using De-oiled Biomass: Kinetics and Isotherm Analysis," Biores. Technol. Rep., 7, 100300 (2019). https://doi.org/10.1016/j.biteb.2019.100300
  6. Akbarnejad, S., Amooey, A. A., and Ghasemi, S., "High Effective Adsorption of Acid Fuchsin Dye Using Magnetic Biodegradable Polymer-based Nanocomposite from Aqueous Solutions," Microchem. J., 149, 103966 (2019). https://doi.org/10.1016/j.microc.2019.103966
  7. Jalalian, N., and Nabavi, S. R., "Electrosprayed Chitosan Nanoparticles Decorated on Polyamide 6 Electrospun Nanofibers as Membrane for Acid Fuchsin Dye Filtration from Water," Surf. Interface Anal., 21, 100779 (2020). https://doi.org/10.1016/j.surfin.2020.100779
  8. Marrakchi, F., Ahmed, M. J., Khanday, W. A., Asif, M., and Hameed, B. H., "Mesoporous Carbonaceous Material from Fish Scales as Low-Cost Adsorbent for Reactive Orange 16 Adsorption," J. Taiwan Inst. Chem. Eng., 71, 47-54 (2017). https://doi.org/10.1016/j.jtice.2016.12.026
  9. Lee, J. J., "Characleristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon," Clean Technol., 26(2), 122-130 (2020). https://doi.org/10.7464/KSCT.2020.26.2.122
  10. Lee, J. J., "Study on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Murexide by Activated Carbon," Clean. Technol., 25(1), 56-62 (2019). https://doi.org/10.7464/KSCT.2019.25.1.056
  11. Fu, J., Zhu, J., Wang, Z., Wang, Y., Wang, S., Yan, R., and Xu, Q., "Highly-Efficient and Selective Adsorption of Anionic Dyes onto Hollow Polymer Microcapsules Having a High Surface-Density of Amino Groups: Isotherms, Kinetics, Thermodynamics and Mechanism," J. Colloid Interface Sci., 542, 123-135 (2019). https://doi.org/10.1016/j.jcis.2019.01.131
  12. Hamza, W., Dammak, N., Hadjltaief, H. B., Eloussaief, M., and Benzina, M., "Sono-assisted Adsorption of Cristal Violet Dye onto Tunisian Smectite Clay: Characterization, Kinetics and Adsorption Isotherms," Ecotox. Environ. Safe., 163, 365-371 (2019). https://doi.org/10.1016/j.ecoenv.2018.07.021
  13. Afshin, S., Mokhtari, S. A., Vosoughi, M., Sadeghi, H., and Rashtbari, Y., "Data of Adsorption of Basic Blue 41 Dye from Aqueous Solutions by Activated Carbon Prepared from Filamentous Algae," Data Brief, 21, 1008-1013 (2018). https://doi.org/10.1016/j.dib.2018.10.023
  14. Lee, J. J., "Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon," Appl. Chem. Eng., 28(2), 206-213 (2017). https://doi.org/10.14478/ace.2016.1132
  15. Belbachir, I., and Makhoukhi, B., "Adsorption of Bezathren Dyes onto Sodic Bentonite from Aqueous Solutions," J. Taiwan Inst. Chem. Eng., 75, 105-111 (2017). https://doi.org/10.1016/j.jtice.2016.09.042
  16. De Souza, T. N. V., Carvalho, S. M. L., Vieira, M. G. A., Silva, M. G. C., and Brasil, D. D. S. B., "Adsorption of Basic Dyes onto Activated Carbon: Experimental and Theoretical Investigation of Chemical Reactivity of Basic Dyes Using DFT-based Descriptors," Appl. Surf. Sci., 448, 662-670 (2018). https://doi.org/10.1016/j.apsusc.2018.04.087
  17. Kaur, S., Rani, S., Mahajan, R. K., Asif, M., and Gupta, V. K., "Synthesis and Adsorption Properties of Mesoporous Material for the Removal of Dye Safranin: Kinetics, Equilibrium, and Thermodynamics," J. Ind. Eng. Chem., 22, 19-27 (2015). https://doi.org/10.1016/j.jiec.2014.06.019
  18. Gercel, O., Ozcan, A., Ozcan, A. S., and Gercel, H. F., "Preparation of Activated Carbon from a Renewable Bio-plant of Euphorbia Rigida by H2SO4 Activation and Its Adsorption Behavior in Aqueous Solutions," Appl. Surf. Sci., 253(11), 4843-4852 (2007). https://doi.org/10.1016/j.apsusc.2006.10.053
  19. Lee, E. H., Lee, K. Y., Kim, K. W., Kim, H. J., Kim, I. S., Chung, D. Y., Moon, J. K., and Choi, J. W., "Removal of I by Adsorption with AgX (Ag-impregnated X Zeolite) from High-Radioactive Seawater Waste," J. Nucl. Fuel Cycle Waste Technol., 14(3), 223-234 (2016). https://doi.org/10.7733/JNFCWT.2016.14.3.223
  20. Al-Kadhi, N. S., "The Kinetic and Thermodynamic Study of the Adsorption Lissamine Green B dye by Micro-particle of Wild Plants from Aqueous Solutions," Egypt. J. Aquat. Res., 45(3), 231-238 (2019). https://doi.org/10.1016/j.ejar.2019.05.004
  21. Gopinathan, R., Bhowal, A., and Garlapati, C., "Thermodynamic Study of Some Basic Dyes Adsorption from Aqueous Solutions on Activated Carbon and New Correlations," J. Chem. Thermodyn., 107, 182-188 (2017). https://doi.org/10.1016/j.jct.2016.12.031
  22. Hasani, S., Ardejani, F. D., and Olya, M. E., "Equilibrium and Kinetic Studies of Azo Dye (Basic Red 18) Adsorption onto Montmorillonite: Numerical Simulation and Laboratory Experiments," Korean J. Chem. Eng., 34(8), 2265-2274 (2017). https://doi.org/10.1007/s11814-017-0110-5