• Title/Summary/Keyword: lattice in ${\mathcal{B}}_3$

Search Result 3, Processing Time 0.019 seconds

UNITARY INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.421-428
    • /
    • 2009
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this paper, we showed the following : Let $\mathcal{L}$ be a subspace lattice acting on a Hilbert space $\mathcal{H}$ and let $X_i$ and $Y_i$ be operators in B($\mathcal{H}$) for i = 1, 2, ${\cdots}$. Let $P_i$ be the projection onto $\overline{rangeX_i}$ for all i = 1, 2, ${\cdots}$. If $P_kE$ = $EP_k$ for some k in $\mathbb{N}$ and all E in $\mathcal{L}$, then the following are equivalent: (1) $sup\;\{{\frac{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}{{\parallel}E^{\perp}({\sum}^n_{i=1}Y_if_i){\parallel}}:f{\in}H,n{\in}{\mathbb{N}},E{\in}\mathcal{L}}\}$ < ${\infty}$ range $\overline{rangeY_k}\;=\;\overline{rangeX_k}\;=\;\mathcal{H}$, and < $X_kf,\;X_kg$ >=< $Y_kf,\;Y_kg$ > for some k in $\mathbb{N}$ and for all f and g in $\mathcal{H}$. (2) There exists an operator A in Alg$\mathcal{L}$ such that $AX_i$ = $Y_i$ for i = 1, 2, ${\cdots}$ and AA$^*$ = I = A$^*$A.

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

SPIN HALF-ADDER IN 𝓑3

  • HASAN KELES
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.187-196
    • /
    • 2023
  • This study is about spin half add operations in 𝓑2 and 𝓑3. The burden of technological structures has increased due to the increase in the use of today's technological applications or the processes in the digital systems used. This has increased the importance of fast transactions and storage areas. For this, less transactions, more gain and storage space are foreseen. We have handle tit (triple digit) system instead of bit (binary digit). 729 is reached in 36 in 𝓑3 while 256 is reached with 28 in 𝓑2. The volume and number of transactions are shortened in 𝓑3. The limited storage space at the maximum level is storaged. The logic connectors and the complement of an element in 𝓑2 and the course of the connectors and the complements of the elements in 𝓑3 are examined. "Carry" calculations in calculating addition and "borrow" in calculating difference are given in 𝓑3. The logic structure 𝓑2 is seen to embedded in the logic structure 𝓑3. This situation enriches the logic structure. Some theorems and lemmas and properties in logic structure 𝓑2 are extended to logic structure 𝓑3.