• Title/Summary/Keyword: latitudinal analysis

Search Result 39, Processing Time 0.025 seconds

Latitudinal Distribution of Sunspots Revisited

  • Cho, Il-Hyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Characteristics of latitude variations of sunspots in the northern and southern hemispheres are investigated using the daily sunspot area and its latitude during the period from 1874 to 2009. Solar magnetic activity is portrayed in the form of sunspot, regions of concentrated fresh magnetic fields observed on the surface of the Sun. By defining center-of-latitude (COL) as an area-weighted latitude, we find that COL is not monotonically decreasing as commonly assumed. In fact, small humps (or short plateaus) between solar minima can be seen around every solar maxima. We also find that when the northern (southern) hemisphere is magnetically dominant, COL is positive (negative), except the solar cycle 23, which may give a hint that these two phenomena are consistently regulated by one single mechanism. As a result of periodicity analysis, we find that several significant periodicities, such as, of ~5.5, ~11, ~49, and ~167 years.

Ichthyofaunistic Biogeography of the East Sea: Comparison between Benthic and Pelagic Zonalities

  • Kafanov, Alexander I.;Volvenko, Igor V.;Pitruk, Dmitry L.
    • Ocean and Polar Research
    • /
    • v.23 no.1
    • /
    • pp.35-49
    • /
    • 2001
  • An ichthyofauna analysis of the East Sea using quantitative investigation procedures for latitudinal variations of the species richness and clustering of the species list is presented to illustrate the application of the adopted geographical scaling (less than 1:10,000,000) which provides a principal opportunity for common benthic and pelagic biogeographical zonation. The distribution of both pelagic and benthic marine fish biota at a scale of biosphere (or its major sections) was highly influenced by spatial nonuniformity of hydrological structure associated with the various water circulations and frontal zones. Following zoogeographical zonations were established for the East Sea: Osaka, East Korea, Primorye, North Primorye, Northern East Sea, Uetsu, Tsugaru, Soya and West Sakhalin.

  • PDF

A Non-Heating Small-Sclaed Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation (소형 비가열 실험을 이용한 원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1927-1932
    • /
    • 2004
  • A 1/21.6 scaled non-heating experimental facility was prepared utilizing the results of a scaling analysis to simulate the APR1400 reactor and insulation system. The behaviors of the air bubble-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the injected air flow rate and distribution. As the injected air flow rates increased, the natural circulation flow rates also increased. Both the longitudinal and the latitudinal distributions of the injected air affected the natural circulation flow rates, especially, the longitudinal effect is more larger.

  • PDF

Linear Instability and Saturation Characteristics of Magnetosonic Waves along the Magnetic Field Line

  • Min, Kyungguk;Liu, Kaijun
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.85-94
    • /
    • 2020
  • Equatorial noise, also known magnetosonic waves (MSWs), are one of the frequently observed plasma waves in Earth's inner magnetosphere. Observations have shown that wave amplitudes maximize at the magnetic equator with a narrow extent in their latitudinal distribution. It has been understood that waves are generated from an equatorial source region and confined within a few degrees magnetic latitude. The present study investigates whether the MSW instability and saturation amplitudes maximize at the equator, given an energetic proton ring-like distribution derived from an observed wave event, and using linear instability analysis and particle-in-cell simulations with the plasma conditions at different latitudes along the dipole magnetic field line. The results show that waves initially grow fastest (i.e., with the largest growth rate) at high latitude (20°-25°), but consistent with observations, their saturation amplitudes maximize within ±10° latitude. On the other hand, the slope of the saturation amplitudes versus latitude revealed in the present study is not as steep as what the previous statistical observation results suggest. This may be indicative of some other factors not considered in the present analyses at play, such as background magnetic field and plasma inhomogeneities and the propagation effect.

Analysis on the Movement of Bag-Net in Set-Net by Telemetry Techniques (텔레메트리 기법에 의한 정치망 원통의 거동 해석)

  • 황보규;신현옥;양용림;이주희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.24-34
    • /
    • 2001
  • The authors reconstruct a mooring type underwater positioning system to measure the movement of bag-net in a set-net by long base line mode with four transponders attached on the bag-net in latitudinal and a transponder fixed on the sea bed. To confirm the practical use of the system, the field experiments were carried out at the Jaran Bay, Kosung, Kyungnam Prov., on October 6, 2000 (neap tide) and November 28, 2000 (spring tide). And the vertical oscillation of bag-net was observed with three data loggers attached on the bottom of bag-net in longitudinal on November 28, 2000. The longitudinal movement range, the latitudinal one and the vertical one of the bag-net were 3.2 m, 3.4 m and 2.1 m. respectively. At the spring tide, these variations were 7.8 m, 7.8 m and 5.0 m, respectively. The vertical oscillation range about the bottom of the bag-net at near point of the slope net, at the middle part and at far point from the slope net were 3.2 m, 3.7 m and 8.4 m, respectively. The depth of the bottom net was decreased and its vertical oscillation appeared frequently when the current speed was more than 10 cm/s and the current direction was significantly different from the longitudinal axis of the bag-net. The variation of hydrophone coordinates measured by the transponder fixed on the sea bed presents that hydrophones equipped to the frame line of the set-net could be moved within several meters due to the tidal current. The fact indicates that the compensation of hydrophone coordinates is necessary to reduce the measuring errors. The position measuring errors of x, y and z axis of the system measured in the cage of aquaculture were 0.6 m, 0.8 m, and 1.2 m, respectively. And the errors of the transponders those were close to the base lines or placed in the baselines were smaller than those of others.

  • PDF

Estimation of the air temperature over the sea using the satellite data

  • Kwon B. H.;Hong G. M.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.392-393
    • /
    • 2005
  • Due to the temporal and spatial simultaneity and the high-frequency repetition, the data set retrieved from the satellite observation is considered to be the most desirable ones for the study of air-sea interaction. With rapidly developing sensor technology, satellite-retrieved data has experienced improvement in the accuracy and the number of parameters. Nevertheless, since it is still impossible to directly measure the heat fluxes between air and sea, the bulk method is an exclusive way for the evaluation of the heat fluxes at the sea surface. It was noted that the large deviation of air temperature in the winter season by the linear regression despite good correlation coefficients. We propose a new algorithm based on the Fourier series with which the SST and the air temperature. We found that the mean of air temperature is a function of the mean of SST with the monthly gradient of SST inferred from the latitudinal variation of SST and the spectral energy of air temperature is related linearly to that of SST. An algorithm to obtain the air temperature over the sea was completed with a proper analysis on the relation between of air temperature and of SST. This algorithm was examined by buoy data and therefore the air temperature over the sea can be retrieved based on just satellite data.

  • PDF

Hadley Circulation Strength Change in Response to Global Warming: Statistics of Good Models

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.665-672
    • /
    • 2016
  • In this study, we examine future changes in the Hadley cell (HC) strength using CMIP5 climate change simulations. The current study is an extension of a previous study by Seo et al. that used all 30 available models. Here, we select 18-23 well-performing models based on their significant internal sensitivity of the interannual HC strength variation to the latitudinal temperature gradient variation. The model projections along with simple scaling analysis show that the inter-model variability in the HC strength change is a result of the inter-model spread in the meridional temperature gradient across the subtropics for both DJF and JJA, not by the tropopause height or gross static stability change. The HC strength is expected to weaken significantly during DJF, while little change is expected in the JJA HC strength. Compared to the calculations with all model members, selected model statistics increase the linear correlation between the changes in HC strength and meridional temperature gradient by 13~23%, confirming the robust sensitivity of the HC strength to the meridional temperature gradient. Two scaling equations for the selected models predict changes in HC strength better than all-member predictions. In particular, the prediction improvement in DJF is as high as 30%. The simple scaling relations successfully predict both the ensemble-mean changes and model-to-model variations in the HC strength for both seasons.

Response of the Poleward Boundary of the Nightside Auroral Oval to Impacts of Solar Wind Dynamic Pressure Enhancement

  • Cho, Joon-Sik;Lee, Dae-Young;Kim, Kyung-Chan;Lee, Ji-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2010
  • In this paper we have investigated latitudinal variations of the poleward boundary of the nightside auroral oval when the magnetosphere is hit by an enhanced solar wind dynamic pressure front. We used precipitating particle data obtained from Defense Meteorological Satellite Program satellites to identify the locations of the boundary before and after enhanced pressure impacts. The boundary locations are represented by a parameter called "b5e". After performing the analysis for a number of events, we found that the basic effect of the solar wind pressure increase impact is often (but not always) to move the poleward boundary of the nightside auroral oval poleward. However, this effect can be often modified by other factors, such as simultaneous variations of the interplanetary magnetic field with a pressure increase, and thus the boundary response is not necessarily a poleward shift in many cases. We demonstrate this with specific examples, and discuss other possible complicating factors.

Statistical analysis of SC-associated geosynchronous magnetic field perturbations

  • Kim, Gwan-Hyeok;Park, Jong-Seon;Lee, Dong-Hun;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • Kokubun (1983) reported the local time variation of normalized amplitude of sudden commencement (SC) with a strong day-night asymmetry at geosynchronous orbit with 81 SC events. Further careful inspection of Kokubun's local time distribution reveals that the normalized SC amplitudes in the prenoon sector are larger than those in the postnoon sector. That is, there is a morning-afternoon asymmetry in the normalized SC amplitudes. Until now, however, there are no studies on this SC-associated morning-afternoon asymmetry at geosynchronous orbit. Motivated by this previous observation, we investigate a large data set (422 SC events in total) of geosynchronous SC observations and confirm that the geosynchronous SC amplitudes is larger in the morning sector than in the afternoon sector. This morning-asymmetry is probably caused by the enhancement of partial ring current, which is located in the premidnight sector, due to solar wind dynamic pressure increase. We also examine the latitudinal and seasonal variations of the normalized SC amplitude. We find that the SC-associated geosynchronous magnetic field perturbations are dependent on the magnetic latitude and season of the year. This may be due to the location of the magnetopause and cross-tail currents enhanced during SC interval with respect to geosynchronous spacecraft position.

  • PDF

NUMERICAL ANALYSIS FOR THE SHALLOW WATER EQUATIONS ON THE SPHERE BY CIP METHOD (CIP법을 이용한 구 좌표계에서의 천수 방정식 해석)

  • Yoon, Seong-Young;Kim, Soo-Youn;Kim, Hyun-Chul
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.7-14
    • /
    • 2005
  • In this study, the shallow water equations on the sphere is simulated by the proposed method which has high spatial resolution and is based on the CIP(Cubic Interpolated Pseudoparticle) method. The governing equations are approximated on the longitude-latitudinal coordinate system. To avoid the problems resulting from the convergence of the meridians toward high-latitude and singularities on the poles, the semi-Lagrangian and finite volume method are employed. in addition, the CIP method is employed to solve the advection equations and is extended to apply on the equations in the polar coordinate system. The mathematical formulation and numerical results are also described. To verify of the efficiency, accuracy and capability of proposed algorithm, the standard test cases proposed bv Williamson et. al are simulated and the results are compared with other results. As a result, it is found that the present scheme gives a good properties in preserving shapes of solution and settles the pole problems in solving the shallow water equations on the sphere.