• Title/Summary/Keyword: latex-modified concrete

Search Result 128, Processing Time 0.025 seconds

Application and Development of Protect Technique for waterproofing Reinforced Concrete Bridge Decks by Latex-Modified Mortar (라텍스 모르타르를 이용한 콘크리트 교면 방수층 보호 공법 개발 및 적용에 관한 연구)

  • Han, Sang-Il;Lee, Won-Young;Kim, Jae-won;Kang, Seung-Hee;Cha, Dong-Hwa;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.175-178
    • /
    • 2009
  • This study is thing for construction properties that protect about damage of waterproofing course that is problem in asphalt pavement and latex modification concrete pavement. It is thing about new method of construction and develop protecting material of waterproofing. Did performance test item first at, as a result, drew by suitable thing in all KS items, This is considered to have more effective spot construction work because if means that have stability by material as well as method construction.

  • PDF

Field Applicability Evaluation of SB Latex-Modified Concrete for Concrete Bridge Deck Overlay (콘크리트 교면 덧씌우기를 위한 SB 라텍스개질 콘크리트의 현장적용성 평가)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Ki-Hyun;Kim, Tae-Kyong
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.93-103
    • /
    • 2001
  • This study focused on the field applicability evaluation of SB latex-modified concrete (LMC) for concrete bridge deck overlay using mobile mixer. The main experimental factors were water-cement ratio(31, 33, 35 37%), latex contents(0, 5, 10, 15, 20%), and fine aggregate ratio(55, 56, 57, 58%) in order to evaluate the workability, mechanical properties, and durability property of LMC. The slump loss, air content, compressive and flexible strength tests were used to evaluate LMC workability and strength properties. Also, the rapid chloride permeability test was used to evaluate the relative permeability of LMC. As a results, the LMC with enough workability and good quality was produced when it was mixed in field using mobile mixer, satisfying the target compressive strength and flexural strength. The required water-cement ratio of LMC for same workability when mixing with mobile mixer was less than that when mixing in laboratory. Increasing the amount of latex produced concrete with increased flexural strength by mobile mixer. The required cement-water ratios for same initial $19{\pm}3cm$ slump were 37% and 33% at laboratory and mobile mixer, respectively. The mobile mixer was accurately calibrated satisfying the required specification.

  • PDF

Physical Properties of Polymer-Modified Mortars Using Waste Concrete Fine Aggregate (재생잔골재를 사용한 폴리머 시멘트 모르타르의 물성)

  • Hwang, Eui-Hwan;Choi, Jae-Jin;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.793-797
    • /
    • 2005
  • This study was undertaken to examine the feasibility of recycling waste concrete fine aggregate to prepare polymer-modified mortars. The specimens of polymer-modified mortars were prepared by using styrene-butadiene rubber(SBR) latex and polyacrylic ester(PAE) emulsion as a polymer modifier. The formulations for specimens were prepared with various replacing ratios of waste concrete fine aggregates as parts of standard sand and various polymer cement ratios. For the evaluation of the performance of polymer-modified mortars, various physical properties were investigated. As a results, water cement ratio of polymer-modified fresh mortars increased with an increase of recycled fine aggregate, but decreased with an increase of polymer modifiers. The compressive and flexural strengths of polymer-modified mortars decreased with an increase of recycled fine aggregate, but flexural strengths increased with an increase of polymer modifiers.

  • PDF

Analysis of Air Void Systems in Latex-Modified Concretes with Cement Types (시멘트 종류에 따른 라텍스개질 콘크리트의 미세공극 구조 분석)

  • Yun, Kyong-Ku;Jeong, Won-Kyong;Kim, Ki-Heun;Kim, Kyong-Jin
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.73-82
    • /
    • 2005
  • Linear traverse method and point count method described at ASTM have been widely used to estimate the air void system in hardened concrete. These methods, however, are rarely used at present, because they require many efforts and time consuming works. Also these results depend on each person's decision, and are not repeatable. Thus, new image analysis method using microscope and computer processes has been approached for analyzing air void system in hardened concrete. The purpose of this study was to analysis the air void systems in latex-modified concretes using a reasonable and objective image analysis method with main experimental variables such as cement types(ordinary portland cement, rapid setting cement) and latex contents(0%,15%). In the results of this study, the use of polymer latex showed that it could be attributed to its air void systems, due to the fact that the latex emulsion acts as an air-entraining agent, which thus generally guarantees an adequate air-void system.

  • PDF

Strategy of LMC Application at Bridge Overlay in Korea (LMC 교면포장공법의 국내 도입 방안)

  • 김기헌;윤경구;박상일;홍창우;이주형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1063-1068
    • /
    • 2000
  • Latex modified concrete (LMC) has grown to be accepted as a standard material of construction overlaying bridge decks in America due to its superior physical and chemical properties. The properties of latex, combined with the low water-cement ratio, produce a concrete that has improved flexural, tensile, and bond strength, lower modulus of elasticity, increased freeze-thaw resistance, and reduced permeability compared to conventional concrete of similar mix design. LMC overlays have been service in excellence for 30 years on thousands of bridge in U.S.A. This may, also, prolong the life cycle of bridge deck once it is adopted in Korea. The self-contained, mobile, continuous mixer is most appropriate particularly for concrete quality assurance. Assuring quality on a bridge deck overlay project should begin in the design phase and continue after the construction is completed. Quality should be the concern of everyone involved-owner, designer, and contractor.

Properties of Cement Mortar Using Polymer Coated Powdered Rubber (폴리머 코팅 폐타이어 분말을 혼입한 시멘트 모르터의 특성)

  • Song, Hun;Jo, Young-Kug;Park, Hong-Shin;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.51-57
    • /
    • 1996
  • The purpose of this study is to improve the properties by increasing of the adhesion strength of styrene-butadiene rubber(SBR) latex coated powdered rubber in cement mortar. SBR-modified mortar using powdered rubber is also tested as the same method. From the test results, the cement mortar using SBR latex coated powdered rubber have a good mechanical properties compared with that using uncoated powdered rubber. The mechanical properties of SBR-modified mortar using powdered rubber with polymer-cement ratios of 10% are also improved.

  • PDF

Mechanic Properties of HES-LMS Mortar (조강형 라텍스개질 스프레이 몰탈의 역학적 특성)

  • Lee, Jin-Beom;Choi, Sung-Yong;Kim, Ki-Heun;Kim, Yong-Kon;Yun, Kyong-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.841-844
    • /
    • 2006
  • Recently, tunnels being constructed in korea with the increased construction of highways, high-speed railways and hydro structure. shotcrete and spray is one of the major processes in that construction. So general Shotcrete and spray has many problems on strength property, environmental pollution and human body noxiousness as the use of accelerater. However, In this paper using HES-LMS(High Early Strength Latex Modified Spray) without accelerater can solve problems which are mentioned above. problems that the hish early cement has can be solved by modifying material with latex. Therefore HES-LMS mortar is Classify by High performance and High ability. Analysis according to the variables such as W/C, Latex content and sand content is conducted. Studied about mechanical characteristic of material such as each parameter characteristic, and rebound characteristic is completed.

  • PDF

Air-Void Structure of Very-Early Strength Latex-Modified Concrete Using Ultra-Fine Fly Ash (울트라 파인 플라이 애시를 사용한 초속경 LMC의 공극구조 특성)

  • Choi, Pan-Gil;Park, Won-Il;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • Very-early strength latex-modified concrete (VES-LMC) was developed with a focus on workability, strength development and long-term durability that would allow for opening a bridge to traffic only 3 hours after concrete placement, which would be useful when repairing concrete bridge deck overlays. However, even though usage of latex in VES-LMC improves the durability, it has a disadvantage that it produces lots of entrained air. Therefore, specific plan is necessary since it is weak for freezing and thawing in air-void structure. In the present study ultra-fine fly ash (UFFA) was used. Test results are follows ; Air content of VES-LMC UFFA (VES-LMC using UFFA) concrete was decreased since major pozzolan reaction was happened in one day. It was also found that total air content of concrete was decreased with pozzolan reaction since air content in 28 days was the same with one day air content. The addition of calcium hydroxide increased entrained air which is smaller than size of 200 ${\mu}m$. It was effective to improve the air-void structure of VES-LMC since spacing factor can be confirmed as smaller than size of 200 ${\mu}m$ using more than 15% of UFFA.