• Title/Summary/Keyword: lateral root development

Search Result 71, Processing Time 0.028 seconds

Effects of Shading on Growth of 1-year-old Cornus controversa H$_{EMSL}$, Seedlings (피음이 층층나무 1년생 유묘의 생장에 미치는 영향)

  • 최재형;홍성각;김종진
    • Journal of Korea Foresty Energy
    • /
    • v.19 no.1
    • /
    • pp.20-29
    • /
    • 2000
  • This study was carried out to investigate the effects of shading on the growth of 1 -year-old seedlings of Cornus controversa. The height growth was highest in relative light intensities of 100% and 50%, but relative growth rate in 50% was higher than that in 100% treatment. The growth did not occur under 9% relative light intensity. The root collar diameter growth at different light intensities is similar to height growth. The leaf area was highest in 50% relative light intensity, and the leaf area under the light intensity was small compared with the control. SLA and LAI of seedlings increased with decreasing relative light intensity. The LAR and LWR of seedlings increased with decreasing light intensity, but LWR decreased at 9% relative light intensity. The dry weight of root, stem, leaf and branch, and the number of branch and leaf decreased with decreasing relative light intensity. T/R ratio was highest in 17% and 30% relative light intensity. Lateral root growth decreased with decreasing light intensity except for that in 50% light intensity.

  • PDF

The Plant Growth-Promoting Fungus Aspergillus ustus Promotes Growth and Induces Resistance Against Different Lifestyle Pathogens in Arabidopsis thaliana

  • Salas-Marina, Miguel Angel;Silva-Flores, Miguel Angel;Cervantes-Badillo, Mayte Guadalupe;Rosales-Saavedra, Maria Teresa;Islas-Osuna, Maria Auxiliadora;Casas-Flores, Sergio
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.686-696
    • /
    • 2011
  • To deal with pathogens, plants have evolved sophisticated mechanisms including constitutive and induced defense mechanisms. Phytohormones play important roles in plant growth and development, as well as in the systemic response induced by beneficial and pathogen microorganisms. In this work, we identified an Aspergillus ustus isolate that promotes growth and induces developmental changes in Solanum tuberosum and Arabidopsis thaliana. A. ustus inoculation on A. thaliana and S. tuberosum roots induced an increase in shoot and root growth, and lateral root and root hair numbers. Assays performed on Arabidopsis lines to measure reporter gene expression of auxin-induced/ repressed or cell cycle controlled genes (DR5 and CycB1, respectively) showed enhanced GUS activity, when compared with mock-inoculated seedlings. To determine the contribution of phytohormone signaling pathways in the effect elicited by A. ustus, we evaluated the response of a collection of hormone mutants of Arabidopsis defective in auxin, ethylene, cytokinin, or abscisic acid signaling to the inoculation with this fungus. All mutant lines inoculated with A. ustus showed increased biomass production, suggesting that these genes are not required to respond to this fungus. Moreover, we demonstrated that A. ustus synthesizes auxins and gibberellins in liquid cultures. In addition, A. ustus induced systemic resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae DC3000, probably through the induction of the expression of salicylic acid, jasmonic acid/ethylene, and camalexin defense-related genes in Arabidopsis.

MANAGEMENT OF DIASTEMA AFTER REMOVAL OF MESIODENS (정중 과잉치 발거 이후 정중 이개의 폐쇄)

  • Cho, Eun-Ju;Choi, Yeong-Chul;Lee, Keung-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.348-353
    • /
    • 2003
  • Early detection and prudent management of mesiodens or supernumerary tooth should be considered essential in reducing disturbance in the eruption and position of the adjacent permanent incisor. While it is true that the presence of diastema may be regarded as normal at the early mixed dentition stage, the early detection and removal of the mesiodens is a prerequisite to facilitate spontaneous alignment or subsequent approximation of the permanent central incisors. In many cases, diastema due to mesiodens can be physiologically corrected spontaneously after the extraction of mesiodens. The best choice of treatment of diastema may be observation. Orthodontic intervention is required only spontaneous closing of diastema does not occur within observation period. In orthodontic intervention, careful treatment plan should be established. Clinician gives considerations to angulation of central and lateral incisor, proximity of lateral incisor, developmental stage and position of canine, pattern and extent of anterior crowding. Orthodontic movement should be done slowly with light force. In addition, periodic radiographic observation are needed to monitor the root development and root resorption. Case 1, 2 and 3 showed physiologic closures after the extraction of mesiodens. In these cases, acceptable alignment of central and lateral incisors was obtained. In case 4, orthodontic correction for diastema was performed successfully after the extraction of mesiodens. After the orthodontic closure of the diastema, it was decided that a retainer was not needed, because the dentition was under a dynamic stage in exchanging teeth and also developing arches.

  • PDF

Temporal and Spatial Downregulation of Arabidopsis MET1 Activity Results in Global DNA Hypomethylation and Developmental Defects

  • Kim, Minhee;Ohr, Hyonhwa;Lee, Jee Woong;Hyun, Youbong;Fischer, Robert L.;Choi, Yeonhee
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.611-615
    • /
    • 2008
  • DNA methylation is an epigenetic mechanism for gene silencing. In Arabidopsis, MET1 is the primary DNA methyltransferase that maintains CG DNA methylation. Plants having an overall reduction of MET1 activity, caused by a met1 mutation or a constitutively expressed MET1 antisense gene, display genome hypomethylation, inappropriate gene and transposon transcription, and developmental abnormalities. However, the effect of a transient reduction in MET1 activity caused by inhibiting MET1 expression in a restricted set of cells is not known. For this reason, we generated transgenic plants with a MET1 antisense gene fused to the DEMETER (DME) promoter (DME:MET1 a/s). Here we show that DME is expressed in leaf primordia, lateral root primoridia, in the region distal to the primary root apical meristem, which are regions that include proliferating cells. Endogenous MET1 expression was normal in organs where the DME:MET1 a/s was not expressed. Although DME promoter is active only in a small set of cells, these plants displayed global developmental abnormalities. Moreover, centromeric repeats were hypomethylated. The developmental defects were accumulated by the generations. Thus, not maintaining CG methylation in a small population of proliferating cells flanking the meristems causes global developmental and epigenetic abnormalities that cannot be rescued by restoring MET1 activity. These results suggest that during plant development there is little or no short-term molecular memory for reestablishing certain patterns of CG methylation that are maintained by MET1. Thus, continuous MET1 activity in dividing cells is essential for proper patterns of CG DNA methylation and development.

Regulation of Leaf Polarity during Leaf Development (잎의 발생과정에 있어서의 극성제어)

  • Cho, Kiu-Hyung;Jun, Sang-Eun;Tsukaya , Hirokazu;Kim, Gyung-Tae
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2008
  • Leaves are indeterminate organs and possess a lot of genes which is involved in establishing leaf polarities. These polarities are regulated relatively early during leaf development and defined relative to the factors intrinsic to the primordia and interactions with the shoot apical meristem (SAM). Recently, several genes that control the polarity of lateral organs have been identified. Our genetic study of deformed root and leaf1 (drl1) mutant, which produces narrow, filament‐like leaves and defective meristems, revealed that DRL1 is involved in the regulation of SAM activity and leaf polarity. The DRL1 gene was found to encode a novel protein showing homology to Elongator‐associate protein (EAP) of yeast KTI12. The amino acid sequence of DRL1 is universally conserved in prokaryotes and eukaryotes. DRL1 and the plant DRL1 homologs clearly formed a monophyletic clade, suggesting the evolutionary conservation of DRL1 homologs was maintained in the genomes of all land plants.

The Effect of Sodium Tungstate on the Aldehyde Oxidase and the Growth in the Primary Root of Maize (Zea mays) (옥수수 (Zea mays) 뿌리의 알데히드 산화효소와 생장에 미치는 텅스텐산 나트륨의 영향)

  • Oh, Young-Joo;Cho, Young-Jun;Park, Woong-June
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.990-995
    • /
    • 2007
  • We tested the effect of sodium tungstate, which disturbs the molybdenum cofactor formation, on the activities of aldehyde oxidase(AO) and the growth of maize(Zea mays) primary roots. As reported in other plants, sodium tungstate inhibited AO also in the maize root concentration-dependently. The inhibitory effect of sodium tungstate was observed only when the inhibitor was applied to the living plants. Application of tungstate to the extracted protein did not show any effect. Western analysis revealed slightly decreased level of AO protein in the presence of tungstate, indicating a positive feedback of gene regulation by the product. We also tested the effects of tungstate on the root growth. The elongation of primary root and the development of lateral roots, which are sensitive to the absolute level of auxin, were decreased in the presence of sodium tungstate. However, the gravitropic curvature of the primary root, which is dependent on the relative amount of auxin at both sides, was unaffected. These data suggested the decrease of auxin biosynthesis by the application of tungstate. However, the level of free IAA was unaffected by tungstate application. We discuss the possible explanations for the observed results.

Supplementary Blue and Red Radiation at Sunrise and Sunset Influences Growth of Ageratum, African Marigold, and Salvia Plants

  • Heo, Jeong-Wook;Lee, Yong-Beom;Bang, Hea-Son;Hong, Seung-Gil;Kang, Kee-Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.382-389
    • /
    • 2011
  • BACKGROUND: Light-emitting diodes (LEDs) with lower electric cost and the specific wavelength have been considering as a novel light source for plant production in greenhouse conditions as well as in a closed culture system. Supplementary lighting for day-length extension was considered as light intensity, light quality, and/or photoperiod control on plant growth and development. Effects of supplementary blue or red LED radiation with lower light intensity on growth of Ageratum (Ageratum houstonianum Mill., cv. Blue Field), African marigold (Tagetes erecta L., cv. Orange Boy), and Salvia (Salvia splendens F. Sello ex Ruem & Schult., cv. Red Vista) were discussed during sunrise and sunset twilight in the experiment. METHODS AND RESULTS: Supplementary lighting by blue and red LEDs for 30 (Treatment B30; R30) or 60 (Treatment B60; R60) min. per day were established in greenhouse conditions. Photosynthetic photon flux for supplementary radiation was kept at $15{\mu}mol\;m^{-2}\;s^{-1}$ on the culture bed. Natural condition without supplementary light was considered as a control. The highest shoot and root dry weights were shown in African marigold exposed by red light for 60 min. per day. Supplementary blue and red lighting regardless of the radiation time significantly stimulated development of lateral branches in African marigold. Stem growth in Ageratum and Salvia seedlings was significantly promoted by red radiation as well as natural light. CONCLUSIONS: Extending of the radiation time at sunrise and sunset twilight using LEDs stimulated reproductive growth of flowering plant species. Different characteristics on growth under supplementary blue or red lighting conditions were also observed in the seedlings during supplementary radiation.

Roots Growth Characteristics of Zelkova serrata Makino. after Replanting in the Reclaimed Land from the Sea - On the Root Structure and Spatial Distribution of Fine Root Phytomass - (임해매립지의 느티나무 식재 이후 뿌리 생장특성 -뿌리구조 및 세근의 공간적 분포를 중심으로-)

  • Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.5
    • /
    • pp.46-55
    • /
    • 2007
  • This study was carried out to analyze both the root structure and the fine root phytomass of the vertical and horizontal distribution of Zelkova serrata Makino. which was transplanted in the reclaimed land from the sea in Gwangyang, Jeonnam, South Korea. The base ground was reclaimed land from the sea. $Z_1$ of the planting ground was filled to a $100{\sim}150cm$ thickness with the improved soil instead of the reclaimed soil from the sea, $Z_2$ of the planting ground was covered to a $20{\sim}30cm$ thickness with the improved soil and $Z_3$ of the planting ground was mounded to 120cm thickness with the improved soil on the reclaimed land from the sea. In addition, $Z_4,\;Z_5\;and\;Z_6$ of the planting grounds were at the large-sized mound on the reclaimed land from the sea. $Z_4$ of the planting ground was located at the lowest level, $Z_5$ planting ground was located at the slope and $Z_6$ planting ground was located at the top of the large-sized mound. The large-sized mounds contain 3 layers, the base layer was reclaimed land from the sea and the second layer was mounded to a $200{\sim}300cm$ thickness with the desalinized soil from the sea on the base layers and the finally layers were mounded to a $80{\sim}120cm$ thickness with improved soil on the second layer. The planting grounds $Z_3,\;Z_4,\;Z_5\;and\;Z_6$ developed roots such as tap roots, lateral roots and heart roots. However, in $Z_1\;and\;Z_2$ roots development were inhibited. The fine-root phytomass of the 6 planting ground types was as follows: $113.5g\;DM/m^2$ for $Z_5$, $105.5g\;DM/m^2$ for $Z_4$, $88.3g\;DM/m^2$ for $Z_3$, $81.0g\;DM/m^2$ for $Z_6$, $73.0g\;DM/m^2$ for $Z_2$, $43.3g\;DM/m^2$ for $Z_1$. The vertical distribution of the fine root phytomass decreased from the upper to the deeper soil profiles in the 6 mound types. The fine root phytomass was $43.3{\sim}71.8%$ in a $0{\sim}20cm$ thickness of soil layer and it decreased according to the distance from the nearest trees. The root growth in the improved soil was better than in the reclaimed soil from the sea. However, root growth decreased more in the disturbed soils even though the planting grounds contained the improved soils. The retarded development of roots and the spatial distribution patterns of the fine root phytomass were closely connected to the reclaimed soil from the sea. In the disturbed soil, the soil hardness and alkalic cation($Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+}$). were high and the soil water was lacking. We suggest that the construction of planting grounds and the improvement of bad soil are necessary for the proper and effective growth of landscaping plants.

Variation of Decursin Contents of Root Ages in Floral Inhibition Cultured Angelica gigas Nakai (화성억제재배한 참당귀의 년근별 약효성분함량)

  • 조선행;신국현;김기준
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.317-323
    • /
    • 1993
  • In order to clarify the contents of active principles in floral inhibition cultured Angelica gigas roots, the amounts of crude extract and the contents of decursin and decursinol angelate in the yearly roots were analyzed and compared with respect to the root age, root part and growth stage. The woody cell, weight and width of pith and cortex were also investigated at different growth stage to observe the developmental characteristics of lignification in the roots as bolting and flowering in normal cultured Angelica gigas. The amount of crude extracts did not differ with plant ages, whereas the contents of decursin and decursinol angelate were differed and the highest in 3 year old roots. The contents of decursin in 1, 2 and 3 year old roots were 3.71, 4.76 and 8.20% and those of decursinol angel ate were 2.84, 3.40 and 5.01%, respectively. The amount of crude extracts, and the contents of decursin and decursinol angelate were the highest in fine roots, followed by the lateral roots and the lowest in the primary roots. On the other hand, the amount of the constituents in the cortex were much higher than those in the pith of the root. The amounts of crude extract, and the contents of decursin and decursinol angelate showed the highest value at the vagetative stage and decreased with development to bolting and blooming stage. Woody cells were accumulated in the pith of the root as advancing growth stage, so that the weight and radius of the pith increased, whereas the relative weight and width of the cortex decreased slightly.

  • PDF

Root canal treatment of dens invaginatus and fused tooth

  • Park, So-Young;Bae, Kwang-Shik;Lim, Sung-Sam;Baek, Seung-Ho
    • Proceedings of the KACD Conference
    • /
    • 2001.05a
    • /
    • pp.247-251
    • /
    • 2001
  • ;A dental developmental anomaly is defined as an isolated aberration in tooth form, caused by a disturbance or abnormality which occurred during tooth development. There are numerous types of dental anomalies, and a considerable variation in the extent of the defects occurs with each type. Teeth with these anomalies pose unique challenges. Since the defects are not always apparent clinically, they can confuse diagnosticians investigating the etiology of pulpal pathosis. When endodontic treatment is required, the defects often hinder access cavity preparation and canal instrumentation. Treatment planning also becomes more challenging, since the defects can create complicated periodontal problems, and the malformed teeth can be difficult to restore, particularly those weakened by endodontic therapy. Fusion is defined as the joining of two developing tooth germs resulting in a single large tooth structure. The incidence of fusion is < 1% in the Caucasian population, and it is believed that physical force or pressure produces contact of the developing teeth. Clinically and radiographically, a fused tooth usually appears as one large crown with at least partially separated roots and root canals. There may be a vertical groove in the tooth crown delineating the originally separate crowns. Dens invaginatus is a deep surface invagination of the crown or root that is lined by enamel. Teeth in both maxillary and mandibular arches may be affected, but the permanent maxillary lateral incisor is the tooth most commonly involved. Studies have revealed an incidence ranging from 0.25% to as high as 10%. The invagination ranges from a slight pitting to an anomaly occupying most of the crown and root. The invagination frequently communicates with the oral cavity, allowing the entry of irritants and microorganism either directly into pulpal tissues or into an area that is deparated from pulpal tissues by only a thin layer of enamel and dentin. This continuous ingress of irritants and the subsequent inflammation usually lead to necrosis of the adjacent pulp tissue and then to periapical or periodontal abscesses. If the invagination extends from the crown to the periradicular tissue and has no communication with the root canal system, the pulp may remain vital. Recommended treatment of fused tooth and dens invaginatus has been reported in the endodontic literature. This case report describes the endodontic treatment of a maxillary laterl incisors having fused crown and dens invaginatus.natus.

  • PDF