DOI QR코드

DOI QR Code

The Effect of Sodium Tungstate on the Aldehyde Oxidase and the Growth in the Primary Root of Maize (Zea mays)

옥수수 (Zea mays) 뿌리의 알데히드 산화효소와 생장에 미치는 텅스텐산 나트륨의 영향

  • Oh, Young-Joo (Department of Molecular Biology, BK21 Graduate program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Cho, Young-Jun (Department of Molecular Biology, BK21 Graduate program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Park, Woong-June (Department of Molecular Biology, BK21 Graduate program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • 오영주 (단국대학교 분자생물학과, BK21 RNA전문인력 양성사업팀 & 나노센서바이오텍연구소) ;
  • 조영준 (단국대학교 분자생물학과, BK21 RNA전문인력 양성사업팀 & 나노센서바이오텍연구소) ;
  • 박웅준 (단국대학교 분자생물학과, BK21 RNA전문인력 양성사업팀 & 나노센서바이오텍연구소)
  • Published : 2007.07.30

Abstract

We tested the effect of sodium tungstate, which disturbs the molybdenum cofactor formation, on the activities of aldehyde oxidase(AO) and the growth of maize(Zea mays) primary roots. As reported in other plants, sodium tungstate inhibited AO also in the maize root concentration-dependently. The inhibitory effect of sodium tungstate was observed only when the inhibitor was applied to the living plants. Application of tungstate to the extracted protein did not show any effect. Western analysis revealed slightly decreased level of AO protein in the presence of tungstate, indicating a positive feedback of gene regulation by the product. We also tested the effects of tungstate on the root growth. The elongation of primary root and the development of lateral roots, which are sensitive to the absolute level of auxin, were decreased in the presence of sodium tungstate. However, the gravitropic curvature of the primary root, which is dependent on the relative amount of auxin at both sides, was unaffected. These data suggested the decrease of auxin biosynthesis by the application of tungstate. However, the level of free IAA was unaffected by tungstate application. We discuss the possible explanations for the observed results.

몰리브덴 보조인자 형성을 방해하는 텅스텐산 나트륨이 옥수수 뿌리에서 알데히드 산화효소의 활성과 생장에 미치는 영향을 조사하였다. 다른 식물에서 보고된 바와 같이 옥수수 뿌리에서도 텅스텐산 나트륨은 그 농도가 증가됨에 따라 알데히드 산화효소의 활성을 억제하였는데, 억제 활성은 식물체에 직접 처리한 경우에만 나타나고 추출된 효소에 처리하였을 때에는 효과가 없었다. 텅스텐산은 알데히드 산화효소의 활성화를 억제하는 물질임에도 불구하고, Western분석에 의하면 알데히드 산화효소 단백질의 함량을 감소시키는 것으로 나타나 반응산물이 효소함량을 증가시키는 양성 되먹임 조절관계를 나타내었다. 텅스텐산 나트륨은 효소활성을 억제하는 농도에서 옥수수 원뿌리의 생장과 곁뿌리발생을 억제하였지만 굴중성 반응에는 영향이 없었다. 전자의 두 반응은 옥신 절대함량에 의존하고 후자는 상대량에 의존하므로 텅스텐산 나트륨에 의한 옥신 함량 변화로 관찰된 결과들의 설명이 가능할 것으로 사료되었다. 그러나 뿌리의free IAA의 함량 변화는 검출되지 않았다. 옥신 함량 조절에는 강력한 항상성 기작이 관여하므로 IAA conjugate분해와 nitrilase에 의한 생합성 증가 등 결과 설명에 적용 가능한 내용들을 논의하였다.

Keywords

References

  1. Akaba, S., M. Seo, N. Dohmae, K. Takio, H. Sekimoto, Y. Kamiya, N. Furuya, T. Komano and T. Koshiba, 1999. Production of homo- and hetero-dimeric isozymes from two aldehyde oxidase genes of Arabidopsis thaliana. J. Biochem. 126, 395-401. https://doi.org/10.1093/oxfordjournals.jbchem.a022463
  2. Badwey, J. A., J. M, Robinson, M. J. Karnovsky and M. L. Karnovsky. 1981. Superoxide production by an unusual aldehyde oxidase in guinea pig granulocyte. Characterization and cytochemical localization. J. Biol. Chem. 256, 3479-3486.
  3. Barker-Bridgers, M., D. M. Ribnicky, J. D. Cohen and A. M. Jones. 1998. Red-light-regulated growth: Changes in the abundance of indoleacetic acid in the maize (Zea mays L.) mesocotyl. Planta 204, 207-211. https://doi.org/10.1007/s004250050248
  4. Bittner, B., M. Oreb and R. R. Mendel (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana, J. Biol. Chem. 276. 40381-40384. https://doi.org/10.1074/jbc.C100472200
  5. Bower, P. J., H. M. Brown and W. K. Purves. 1978. Cucumber seedling indoleacetaldehyde oxidase. Plant Physiol. 61, 107-110. https://doi.org/10.1104/pp.61.1.107
  6. Hetz, W, F. Hochholdinger, M. Schwall and G. Feix. 1996. Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J. 10, 845-857. https://doi.org/10.1046/j.1365-313X.1996.10050845.x
  7. Jiang, X. Y., R. T. Omarov, S. Z. Yesbergenova and M. Sagi. 2004. The effect of molybdate and tungstate in the growth medium on abscisic acid content and the Mo-hydroxylases activities in barley (Hordeum vulgare L). Plant Sci. 167, 297-304. https://doi.org/10.1016/j.plantsci.2004.03.025
  8. Kim, Y. J., Y. J. Oh and W. J. Park. 2006. HPLC-based quantification of indole-3-acetic acid in the primary root tip of maize. J. Nano & Bio Tech. 3, 40-45.
  9. Koshiba, T., E, Saito, N. Ono, N. Yamamoto and M. Sato. 1996. Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol. 110, 781-789. https://doi.org/10.1104/pp.110.3.781
  10. Mendel, R. R. and F. Bittner. 2006. Cell biology of molybdenum. Biochimica. Biophysica. Acta. 1763, 621-635. https://doi.org/10.1016/j.bbamcr.2006.03.013
  11. Normanly, J. 1997. Auxin Metabolism. Physiol. Plant 100, 431-442. https://doi.org/10.1111/j.1399-3054.1997.tb03047.x
  12. Omarov, R. T., S. Akaba, T. Koshiba and S. H. Lips. 1999. Aldehyde oxidase in roots, leaves and seeds of barley (Hordeum vulgare L.). J. Exp. Bot. 50, 63-69. https://doi.org/10.1093/jexbot/50.330.63
  13. Park, W. J., V. Kriechbaumer, A. Mueller, M. Piotrowski, R. B. Meeley, A. Gierl, E. Glawischnig. 2003. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol. 133, 794-802. https://doi.org/10.1104/pp.103.026609
  14. Rajagopalan, K. V. and P. Handler. 1966. Aldehyde oxidase. Methods Enzymol. 9, 364-368. https://doi.org/10.1016/0076-6879(66)09075-X
  15. Rodriguez-Trelles, F., R. Tarrio and F. J. Ayala. 2003. Convergence neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc. Natl. Acad. Sci. USA 100, 13413-13417. https://doi.org/10.1073/pnas.1835646100
  16. Sekimoto, H., M. Seo, N. Dohmae, K. Takio, Y. Kamiya and T. Koshiba. 1997. Cloning and molecular characterization of plant aldehyde oxidase. J. Biol. Chem. 272, 15280-15285. https://doi.org/10.1074/jbc.272.24.15280
  17. Seo, M. and T. Koshiba. 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7, 41-48. https://doi.org/10.1016/S1360-1385(01)02187-2
  18. Seo, M., A. J. M. Peeters, H. Koiwai, T. Oritani, A. Marion-Poll, J. A. Zeevart, M. Koornneef, Y. Kamiya and T. Koshiba. 2000. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA 97, 12908-12913. https://doi.org/10.1073/pnas.220426197
  19. Shaw, S. and E. Jayatilleke. 1990. The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem. J. 268, 579-583. https://doi.org/10.1042/bj2680579
  20. van der Zaal, B. J., L. W. Neuteboom, J. E. Pinas, A. N. Chardonnens, H. Schat, J. A. Verkleij and P. J. Hooykaas. 1999. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Mol. Biol. 39, 273-287. https://doi.org/10.1023/A:1006104205959
  21. Yesbergenova, Z., G. Yang, E. Oron, D. Soffer, R. Fluhr and M. Sagi. 2005. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J. 42, 862-876. https://doi.org/10.1111/j.1365-313X.2005.02422.x
  22. Zdnek-Zastocka, E., R. T. Omarov, T. Koshiba and H S. Lips. 2004. Activity and protein level of AO isoforms in pea plants (Pisum saiioum L.) during vegetative development and in response to stress conditions. J. Exp. Bot. 55, 1361-1369. https://doi.org/10.1093/jxb/erh134